ﻻ يوجد ملخص باللغة العربية
A code ${cal C}$ is $Z_2Z_4$-additive if the set of coordinates can be partitioned into two subsets $X$ and $Y$ such that the punctured code of ${cal C}$ by deleting the coordinates outside $X$ (respectively, $Y$) is a binary linear code (respectively, a quaternary linear code). In this paper $Z_2Z_4$-additive codes are studied. Their corresponding binary images, via the Gray map, are $Z_2Z_4$-linear codes, which seem to be a very distinguished class of binary group codes. As for binary and quaternary linear codes, for these codes the fundamental parameters are found and standard forms for generator and parity check matrices are given. For this, the appropriate inner product is deduced and the concept of duality for $Z_2Z_4$-additive codes is defined. Moreover, the parameters of the dual codes are computed. Finally, some conditions for self-duality of $Z_2Z_4$-additive codes are given.
Steganography is an information hiding application which aims to hide secret data imperceptibly into a commonly used media. Unfortunately, the theoretical hiding asymptotical capacity of steganographic systems is not attained by algorithms developed
Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the +/-1-steganography. In this paper,
We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known min
Suppose that $mathcal{P}$ is a property that may be satisfied by a random code $C subset Sigma^n$. For example, for some $p in (0,1)$, $mathcal{P}$ might be the property that there exist three elements of $C$ that lie in some Hamming ball of radius $
The Doob scheme $D(m,n+n)$ is a metric association scheme defined on $E_4^m times F_4^{n}times Z_4^{n}$, where $E_4=GR(4^2)$ or, alternatively, on $Z_4^{2m} times Z_2^{2n} times Z_4^{n}$. We prove the MacWilliams identities connecting the weight dist