ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-field fluctuations around the radio galaxy 3C 31

218   0   0.0 ( 0 )
 نشر من قبل Robert Laing
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. A. Laing




اسأل ChatGPT حول البحث

We present an analysis of the magnetic-field fluctuations in the magnetoionic medium in front of the radio galaxy 3C 31 derived from rotation-measure (RM) fits to high-resolution polarization images. We first show that the Faraday rotation must be due primarily to a foreground medium. We determine the RM structure functions for different parts of the source and infer that the simplest form for the power spectrum is a power law with a high-frequency cutoff. We also present three-dimensional simulations of RM produced by a tangled magnetic field in the hot plasma surrounding 3C 31, and show that the observed RM distribution is consistent with a spherical plasma distribution in which the radio source has produced a cavity.



قيم البحث

اقرأ أيضاً

144 - R. A. Laing 2008
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tai ls. We also use these images to explore the spectral structure of 3C 31 on large and small scales. We infer the apparent magnetic field structure by correcting for Faraday rotation. Some of the intensity substructure in the jets is clearly related to structure in their apparent magnetic field: there are arcs of emission where the degree of linear polarization increases, with the apparent magnetic field parallel to the ridges of the arcs. The spectral indices are significantly steeper (0.62) within 7 arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra of the jet edges are also slightly flatter than the average for their surroundings. At larger distances, the jets are clearly delimited from surrounding larger-scale emission both by their flatter radio spectra and by sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of 3C 31s jets is very close to that found in other FR I galaxies where their jets first brighten in the radio and where X-ray synchrotron emission is most prominent. Farther from the nucleus, where the spectra flatten, X-ray emission is fainter relative to the radio. The brightest X-ray emission from FR I jets is therefore not associated with the flattest radio spectra, but with a particle-acceleration process whose characteristic energy index is 2.24. The spectral flattening with distance from the nucleus occurs where our relativistic jet models require deceleration, and the flatter-spectra at the jet edges may be associated with transverse velocity shear. (Slightly abridged)
91 - R. A. Laing ESO 2003
We present a general approach to the modelling of the brightness and polarization structures of adiabatic, decelerating relativistic jets, based on the formalism of Matthews & Scheuer (1990). We compare the predictions of adiabatic jet models with de ep, high-resolution observations of the radio jets in the FR I radio galaxy 3C 31. Adiabatic models require coupling between the variations of velocity, magnetic field and particle density. They are therefore more tightly constrained than the models previously presented for 3C 31 by Laing & Bridle (2002). We show that adiabatic models provide a poorer description of the data in two crucial respects: they cannot reproduce the observed magnetic-field structures in detail, and they also predict too steep a brightness decline along the jets for plausible variations of the jet velocity. We find that the innermost regions of the jets show the strongest evidence for non-adiabatic behaviour, and that the adiabatic models provide progressively better descriptions of the jet emission at larger distances from the galactic nucleus. We briefly discuss physical processes which might contribute to this non-adiabatic behaviour. In particular, we develop a parameterized description of distributed particle injection, which we fit to the observed total intensities. We show that particles are preferentially injected where bright X-ray emission is observed, and where we infer that the jets are over-pressured.
295 - R. A. Laing 2008
We use high-quality VLA images of the Fanaroff & Riley Class I radio galaxy 3C 31 at six frequencies in the range 1365 to 8440MHz to explore the spatial scale and origin of the rotation measure (RM) fluctuations on the line of sight to the radio sour ce. We analyse the distribution of the degree of polarization to show that the large depolarization asymmetry between the North and South sides of the source seen in earlier work largely disappears as the resolution is increased. We show that the depolarization seen at low resolution results primarily from unresolved gradients in a Faraday screen in front of the synchrotron-emitting plasma. We establish that the residual degree of polarization in the short-wavelength limit should follow a Burn law and we fit such a law to our data to estimate the residual depolarization at high resolution. We show that the observed RM variations over selected areas of 3C 31 are consistent with a power spectrum of magnetic fluctuations in front of 3C 31 whose power-law slope changes significantly on the scales sampled by our data. The power spectrum can only have the form expected for Kolmogorov turbulence on scales <5 kpc. On larger scales we find a flatter slope. We also compare the global variations of RM across 3C 31 with the results of three-dimensional simulations of the magnetic-field fluctuations in the surrounding magnetoionic medium. We show that our data are consistent with a field distribution that favours the plane perpendicular to the jet axis - probably because the radio source has evacuated a large cavity in the surrounding medium. We also apply our analysis techniques to the case of Hydra A, where the shape and the size of the cavities produced by the source in the surrounding medium are known from X-ray data. (Abridged)
The goal of this work is to constrain the strength and structure of the magnetic field associated with the environment of the radio source 3C 449, using observations of Faraday rotation, which we model with a structure function technique and by compa rison with numerical simulations. We assume that the magnetic field is a Gaussian, isotropic random variable and that it is embedded in the hot intra-group plasma surrounding the radio source. For this purpose, we present detailed rotation measure images for the polarized radio source 3C 449, previously observed with the Very Large Array at seven frequencies between 1.365 and 8.385 GHz. We quantify the statistics of the magnetic-field fluctuations by deriving rotation measure structure functions, which we fit using models derived from theoretical power spectra. We quantify the errors due to sampling by making multiple two-dimensional realizations of the best-fitting power spectrum.We also use depolarization measurements to estimate the minimum scale of the field variations. We then make three-dimensional models with a gas density distribution derived from X-ray observations and a random magnetic field with this power spectrum. Under these assumptions we find that both rotation measure and depolarization data are consistent with a broken power-law magnetic-field power spectrum, with a break at about 11 kpc and slopes of 2.98 and 2.07 at smaller and larger scales respectively. The maximum and minimum scales of the fluctuations are around 65 and 0.2 kpc, respectively. The average magnetic field strength at the cluster centre is 3.5 +/-1.2 micro-G, decreasing linearly with the gas density within about 16 kpc of the nucleus.
159 - Fumiaki Nakata 2001
We discuss the properties of galaxies around the radio galaxy 3C 324 at z=1.2 based on BVRIK multi-band imaging data. We have applied a photometric-redshift technique to objects in the 3C 324 field, and identified 35 objects as plausible cluster memb ers. We have found that red and luminous members are concentrated in a small region enclosed by a circle of 40 radius (0.33 Mpc at z=1.2 for Omega_0=0.3, lambda_0=0.7, H_0=70km/s/Mpc cosmology) from the 3C 324 galaxy. The 3C 324 cluster is probably much more compact in size compared with the local clusters. We constructed a K-band luminosity function of the cluster members and fit a Schechter function, and found the characteristic magnitude to be K*_{AB}=20.2+-0.6. This value is consistent with the extrapolation of the pure passive evolution seen for z<1 clusters. We have identified eight bright galaxies which form a red color-magnitude sequence. The slope of the sequence is consistent with the passive evolution model down to K_{AB}<22; we also found that there is no clear age variation in these bright red galaxies. However, seven out of these eight galaxies exhibit a significant excess in the rest UV light with respect to the passive evolution model. This may suggest that the massive early-type galaxies in this high-redshift cluster are still forming stars to some extent. We have confirmed a truncation of the color-magnitude sequence at K_{AB}sim22; faint passively-evolving galaxies may not yet be present in this cluster at zsim1.2. The overall color distribution of the cluster members, selected by the photometric redshift technique, is found to be very broad. We derived the fraction of blue galaxies in this cluster following a
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا