ﻻ يوجد ملخص باللغة العربية
We consider error correction procedures designed specifically for the amplitude damping channel. We analyze amplitude damping errors in the stabilizer formalism. This analysis allows a generalization of the [4,1] `approximate amplitude damping code of quant-ph/9704002. We present this generalization as a class of [2(M+1),M] codes and present quantum circuits for encoding and recovery operations. We also present a [7,3] amplitude damping code based on the classical Hamming code. All of these are stabilizer codes whose encoding and recovery operations can be completely described with Clifford group operations. Finally, we describe optimization options in which recovery operations may be further adapted according to the damping probability gamma.
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc
We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity ma
The generalized amplitude damping channel (GADC) is one of the sources of noise in superconducting-circuit-based quantum computing. It can be viewed as the qubit analogue of the bosonic thermal channel, and it thus can be used to model lossy processe
We study information transmission over a fully correlated amplitude damping channel acting on two qubits. We derive the single-shot classical channel capacity and show that entanglement is needed to achieve the channel best performance. We discuss th
Any kind of quantum resource useful in different information processing tasks is vulnerable to several types of environmental noise. Here we study the behaviour of quantum correlations such as entanglement and steering in two-qubit systems under the