ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly Excited Mesons, Linear Regge Trajectories and the Pattern of the Chiral Symmetry Realization

60   0   0.0 ( 0 )
 نشر من قبل Arkady Vainshtein
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The chiral symmetry of QCD shows up in the linear Weyl--Wigner mode at short Euclidean distances or at high temperatures. On the other hand, low-lying hadronic states exhibit the nonlinear Nambu--Goldstone mode. An interesting question was raised as to whether the linear realization of the chiral symmetry is asymptotically restored for highly excited states. We address it in a number of ways. On the phenomenological side we argue that to the extent the meson Regge trajectories are observed to be linear and equidistant, the Weyl--Wigner mode is not realized. This picture is supported by quasiclassical arguments implying that the quark spin interactions in high excitations are weak, the trajectories are linear, and there is no chiral symmetry restoration. Then we use the string/gauge duality. In the top-down Sakai--Sugimoto construction the nonlinear realization of the chiral symmetry is built in. In the bottom-up AdS/QCD construction by Erlich et al., and Karch et al. the situation is more ambiguous. However, in this approach linearity and equidistance of the Regge trajectories can be naturally implemented, with the chiral symmetry in the Nambu--Goldstone mode. Asymptotic chiral symmetry restoration might be possible if a nonlinearity (convergence) of the Regge trajectories in an intermediate window of $n,J$, beyond the explored domain, takes place. This would signal the failure of the quasiclassical picture.

قيم البحث

اقرأ أيضاً

The parton model relations in conjunction with quark-hadron duality in deep inelastic scattering suggests an asymptotic dominance of quark-diquark type of baryonic excited states with a radial Regge uniformly distributed mass squared spectrum $M_{n}^ 2 = mu^2 n + M_0^2$. We argue that this points to a lineary quark-diquark confining potential. We analyze the radial ($n$) and angular-momentum ($J$) Regge trajectories for all light-quark states with baryon number one listed in the 2016 edition of the Particle Data Tables. The parameters of the mass squared trajectories are obtained by linear regression assuming $Delta M_n^2 sim M_n Gamma_n $ weighted with the width $Gamma_n$ of the resonance and the error analysis is carried out accordingly.
130 - L.Ya. Glozman , C.B. Lang , 2011
Using interpolators with different SU(2)_L times SU(2)_R transformation properties we study the chiral symmetry and spin contents of the rho- and rho-mesons in lattice simulations with dynamical quarks. A ratio of couplings of the $qbargamma^i{tau}q$ and $qbarsigma^{0i}{tau}q$ interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ~1 fm. In the ground state rho meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1) + (1,0) and (1/2,1/2)_b chiral representations with the former being the leading contribution. In contrast, in the rho meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2)_b. Using a unitary transformation from the chiral basis to the {2S +1}L_J basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The rho meson is practically a 3S_1 state with no obvious trace of a spin crisis. The rho meson has a sizeable contribution of the 3D_1 wave, which implies that the rho meson cannot be considered as a pure radial excitation of the rho meson.
We apply a recently developed dispersive formalism to calculate the Regge trajectories of the $f_2(1270)$ and $f_2(1525)$ mesons. Trajectories are calculated, not fitted to a family of resonances. Assuming that these spin-2 resonances can be treated in the elastic approximation the only input are the pole position and residue of the resonances. In both cases, the predicted Regge trajectories are almost real and linear, with slopes in agreement with the universal value of order 1 GeV$^{-2}$.
We point out that the study of the density dependences of the masses of heavy-light mesons give some clues to the chiral symmetry structure in nuclear matter. We include the omega meson effect as well as the sigma meson effect at mean field level on the density dependence of the masses of heavy-light mesons with chiral partner structure. It is found that the omega meson affects the masses of the heavy-light mesons and their antiparticles in the opposite way, while it affects the masses of chiral partners in the same way. This is because the omega meson is sensitive to the baryon number of the light degrees included in the heavy-light mesons. We also show that the mass difference between chiral partners is proportional to the mean field of sigma, reflecting the partial restoration of chiral symmetry in the nuclear matter. In addition to the general illustration of the density dependence of the heavy-light meson masses, we consider two concrete models for nuclear matter, the parity doublet model and skyrmion crystal model in the sense of mean field approximation.
A model for a Regge trajectory compatible with the threshold behavior required by unitarity and asymptotics in agreement with analyticity constraints is given in explicit form. The model is confronted in the time-like region with widths and masses of the mesonic resonances and, in the space-like region, the $rho$ trajectory is compared with predictions derived from $pi-N$ charge-exchange reaction. Breaking of the exchange degeneracy is studied in the model and its effect on both the masses and widths is determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا