ﻻ يوجد ملخص باللغة العربية
We consider the semi-classical limit for the Gross-Pitaevskii equation. In order to consider non-trivial boundary conditions at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wise description of the wave function as the Planck constant goes to zero, so long as no singularity appears in the limit system. For a cubic-quintic nonlinearity, we show that working with analytic data may be necessary and sufficient to obtain a similar result.
In this paper we study the existence of finite energy traveling waves for the Gross-Pitaevskii equation. This problem has deserved a lot of attention in the literature, but the existence of solutions in the whole subsonic range was a standing open pr
New finite energy traveling wave solutions with small speed are constructed for the three dimensional Gross-Pitaevskii equation begin{equation*} iPsi_t= Delta Psi+(1-|Psi|^2)Psi, end{equation*} where $Psi$ is a complex valued function defined on
The Gross-Pitaevskii equation is a widely used model in physics, in particular in the context of Bose-Einstein condensates. However, it only takes into account local interactions between particles. This paper demonstrates the validity of using a nonl
We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full bra