ﻻ يوجد ملخص باللغة العربية
We studied single-crystals of the antiferromagnetic compound UNi0.5Sb2 (TN ~ 161 K) by means of measurements of magnetic susceptibility (chi), specific heat (Cp), and electrical resistivity (rho) at ambient pressure, and resistivity under hydrostatic pressures up to 20 kbar, in the temperature range from 1.9 to 300 K. The thermal coefficient of the electrical resistivity (drho/dT) changes drastically from positive below TN to negative above, reflecting the loss of spin-disorder scattering in the ordered phase. Two small features in the rho vs T data centered near 40 and 85 K correlate well in temperature with features in the magnetic susceptibility and are consistent with other data in the literature. These features are quite hysteretic in temperature, i.e., the difference between the warming and cooling cycles are about 10 and 6 K, respectively. The effect of pressure is to raise TN at the approximate rate of 0.76 K/kbar, while progressively suppressing the amplitude of the small features in rho vs T at lower temperatures and increasing the thermal hysteresis.
We studied the properties of the antiferromagnetic (AFM) UNi0.5Sb2 (TN approx 161 K) compound in Sb-flux grown single crystals by means of measurements of neutron diffraction, magnetic susceptibility ({chi}), specific heat (Cp), thermopower (S), ther
We studied the evolution of superconductivity (sc) and antiferromagnetism (afm) in the heavy fermion compound CePt_3Si with hydrostatic pressure. We present a pressure-temperature phase diagram established by electrical transport measurements. Pressu
We present high-resolution thermal-expansion and specific-heat measurements of single crystalline alpha-RuCl3. An extremely hysteretic structural transition expanding over 100 K is observed by thermal- expansion along both crystallographic axes, whic
The intermetallic compound LaAgSb2 displays two charge-density-wave (CDW) transitions, which were detected with measurements of electrical resistivity (rho), magnetic susceptibility, and X-ray scattering; the upper transition takes place at T1 approx
Motivated by recent experimental observation of an hydrostatic pressure induced transition from semiconductor to semimetal in black phosphorus [Chen et al. in arXiv:1504.00125], we present the first principles calculation on the pressure effect of th