ترغب بنشر مسار تعليمي؟ اضغط هنا

Yang-Mills theory over surfaces and the Atiyah-Segal theorem

289   0   0.0 ( 0 )
 نشر من قبل Daniel A. Ramras
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Daniel A. Ramras




اسأل ChatGPT حول البحث

In this paper we explain how Morse theory for the Yang-Mills functional can be used to prove an analogue, for surface groups, of the Atiyah-Segal theorem. Classically, the Atiyah-Segal theorem relates the representation ring R(Gamma) of a compact Lie group $Gamma$ to the complex K-theory of the classifying space $BGamma$. For infinite discrete groups, it is necessary to take into account deformations of representations, and with this in mind we replace the representation ring by Carlssons deformation $K$--theory spectrum $K (Gamma)$ (the homotopy-theoretical analogue of $R(Gamma)$). Our main theorem provides an isomorphism in homotopy $K_*(pi_1 Sigma)isom K^{-*}(Sigma)$ for all compact, aspherical surfaces $Sigma$ and all $*>0$. Combining this result with work of Tyler Lawson, we obtain homotopy theoretical information about the stable moduli space of flat unitary connections over surfaces.



قيم البحث

اقرأ أيضاً

64 - Daniel A. Ramras 2016
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into acco unt the topology of representation spaces. This involves studying the homotopy group completion of the topological monoid formed by all unitary (or general linear) representations of $G$, under the monoid operation given by block sum. In order to work effectively with this object, we prove a general result showing that for certain homotopy commutative topological monoids $M$, the homotopy groups of $Omega BM$ can be described explicitly in terms of unbased homotopy classes of maps from spheres into $M$. Several applications are developed. We relate our constructions to the Novikov conjecture; we show that the space of flat unitary connections over the 3-dimensional Heisenberg manifold has extremely large homotopy groups; and for groups that satisfy Kazhdans property (T) and admit a finite classifying space, we show that the reduced $K$-theory class associated to a spherical family of finite dimensional unitary representations is always torsion.
166 - Anssi Lahtinen 2012
In this note we prove the analogue of the Atiyah-Segal completion theorem for equivariant twisted K-theory in the setting of an arbitrary compact Lie group G and an arbitrary twisting of the usually considered type. The theorem generalizes a result b y C. Dwyer, who has proven the theorem for finite G and twistings of a more restricted type. Whi
In arXiv:math/0605587, the first two authors have constructed a gauge-equivariant Morse stratification on the space of connections on a principal U(n)-bundle over a connected, closed, nonorientable surface. This space can be identified with the real locus of the space of connections on the pullback of this bundle over the orientable double cover of this nonorientable surface. In this context, the normal bundles to the Morse strata are real vector bundles. We show that these bundles, and their associated homotopy orbit bundles, are orientable for any n when the nonorientable surface is not homeomorphic to the Klein bottle, and for n<4 when the nonorientable surface is the Klein bottle. We also derive similar orientability results when the structure group is SU(n).
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا