ﻻ يوجد ملخص باللغة العربية
In this paper we explain how Morse theory for the Yang-Mills functional can be used to prove an analogue, for surface groups, of the Atiyah-Segal theorem. Classically, the Atiyah-Segal theorem relates the representation ring R(Gamma) of a compact Lie group $Gamma$ to the complex K-theory of the classifying space $BGamma$. For infinite discrete groups, it is necessary to take into account deformations of representations, and with this in mind we replace the representation ring by Carlssons deformation $K$--theory spectrum $K (Gamma)$ (the homotopy-theoretical analogue of $R(Gamma)$). Our main theorem provides an isomorphism in homotopy $K_*(pi_1 Sigma)isom K^{-*}(Sigma)$ for all compact, aspherical surfaces $Sigma$ and all $*>0$. Combining this result with work of Tyler Lawson, we obtain homotopy theoretical information about the stable moduli space of flat unitary connections over surfaces.
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into acco
In this note we prove the analogue of the Atiyah-Segal completion theorem for equivariant twisted K-theory in the setting of an arbitrary compact Lie group G and an arbitrary twisting of the usually considered type. The theorem generalizes a result b
In arXiv:math/0605587, the first two authors have constructed a gauge-equivariant Morse stratification on the space of connections on a principal U(n)-bundle over a connected, closed, nonorientable surface. This space can be identified with the real
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b