ترغب بنشر مسار تعليمي؟ اضغط هنا

A silicate disk in the heart of the Ant

98   0   0.0 ( 0 )
 نشر من قبل Olivier Chesneau
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Olivier Chesneau




اسأل ChatGPT حول البحث

We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees $pm$ 3 degrees) and position angle (5 degrees $pm$ 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9$pm$ 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process.



قيم البحث

اقرأ أيضاً

110 - E. Caffau 2012
Context: The discovery and chemical analysis of extremely metal-poor stars permit a better understanding of the star formation of the first generation of stars and of the Universe emerging from the Big Bang. aims: We report the study of a primordial star situated in the centre of the constellation Leo (SDSS J102915+172027). method: The star, selected from the low resolution-spectrum of the Sloan Digital Sky Survey, was observed at intermediate (with X-Shooter at VLT) and at high spectral resolution (with UVES at VLT). The stellar parameters were derived from the photometry. The standard spectroscopic analysis based on 1D ATLAS models was completed by applying 3D and non-LTE corrections. results: An iron abundance of [Fe/H]=--4.89 makes SDSS J102915+172927 one of the lowest [Fe/H] stars known. However, the absence of measurable C and N enhancements indicates that it has the lowest metallicity, Z<= 7.40x10^{-7} (metal-mass fraction), ever detected. No oxygen measurement was possible. conclusions: The discovery of SDSS J102915+172927 highlights that low-mass star formation occurred at metallicities lower than previously assumed. Even lower metallicity stars may yet be discovered, with a chemical composition closer to the composition of the primordial gas and of the first supernovae.
The study of hyper-compact (HC) or ultra-compact (UC) HII regions is fundamental to understanding the process of massive (> 8 M_sun) star formation. We employed Atacama Large Millimeter/submillimeter Array (ALMA) 1.4 mm Cycle 6 observations to invest igate at high angular resolution (~0.050, corresponding to 330 au) the HC HII region inside molecular core A1 of the high-mass star-forming cluster G24.78+0.08. We used the H30alpha emission and different molecular lines of CH3CN and 13CH3CN to study the kinematics of the ionized and molecular gas, respectively. At the center of the HC HII region, at radii <~500 au, we observe two mutually perpendicular velocity gradients, which are directed along the axes at PA = 39 deg and PA = 133 deg, respectively. The velocity gradient directed along the axis at PA = 39 deg has an amplitude of 22 km/s mpc^(-1), which is much larger than the others, 3 km/s mpc^(-1). We interpret these velocity gradients as rotation around, and expansion along, the axis at PA = 39 deg. We propose a scenario where the H30alpha line traces the ionized heart of a disk-jet system that drives the formation of the massive star (~20 M_sun) responsible for the HC HII region. Such a scenario is also supported by the position-velocity plots of the CH3CN and 13CH3CN lines along the axis at PA = 133 deg, which are consistent with Keplerian rotation around a 20 M_sun star. Toward the HC HII region in G24.78+0.08, the coexistence of mass infall (at radii of ~5000 au), an outer molecular disk (from <~4000 au to >~500 au), and an inner ionized disk (<~500 au) indicates that the massive ionizing star is still actively accreting from its parental molecular core. To our knowledge, this is the first example of a molecular disk around a high-mass forming star that, while becoming internally ionized after the onset of the HII region, continues to accrete mass onto the ionizing star.
Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. Recently, it has been propose d that they can grow as porous aggregates when their monomer radius is smaller than $sim$ 10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability of this dust layer. To evaluate the disk stability, we calculate Toomres stability parameter $Q$, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the gravitational instability using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength $alphalesssim10^{-5}$. If the dust-to-gas ratio is increased twice, the gravitational instability occurs for $alphalesssim10^{-4}$. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.
One of Aesops (La Fontains) famous fables `The Ant and the Grasshopper is widely known to give a moral lesson through comparison between the hard working ant and the party-loving grasshopper. Here we show a slightly different version of this fable, n amely, The Ant and the Metrohopper, which describes human mobility patterns in modern urban life. Numerous real transportation networks and the trajectory data have been studied in order to understand mobility patterns. We study trajectories of commuters on the public transportation of Metropolitan Seoul, Korea. Smart cards (Integrated Circuit Cards; ICCs) are used in the public transportation system, which allow collection of transit transaction data, including departure and arrival stations and time. This empirical analysis provides human mobility patterns, which impact traffic forecasting and transportation optimization, as well as urban planning.
Context: The formation of rocky planetesimals is a long-standing problem in planet formation theory. One of the possibilities is that it results from gravitational instability as a result of pile-up of small silicate dust particles released from subl imating icy pebbles that pass the snow line. Aims: We want to understand and quantify the role of the water snow line for the formation of rock-rich and ice-rich planetesimals. In this paper, we focus on the formation of rock-rich planetesimals. A companion paper examines the combined formation of both rock-rich and ice-rich planetesimals. Methods: We develop a new Monte Carlo code to calculate the radial evolution of silicate particles in a turbulent accretion disk, accounting for the back-reaction (i.e., inertia) of the particles on their radial drift velocity and diffusion. Results depend in particular on the particle injection width (determined from the radial sublimation width of icy pebbles), the pebble scale height and the pebble mass flux through the disk. The scale height evolution of the silicate particles, which is the most important factor for the runaway pile-up, is automatically calculated in this Lagrange method. Results: From the numerical results, we derive semi-analytical relations for the scale height of the silicate dust particles and the particles-to-gas density ratio at the midplane, as functions of a pebble-to-gas mass flux ratio and the $alpha$ parameters for disk gas accretion and vertical/radial diffusion. We find that the runaway pile-up of the silicate particles (formation of rocky planetesimals) occurs if the pebble-to-gas mass flux ratio is $> [(alpha_{Dz}/alpha_{acc})/3 times 10^{-2}]^{1/2}$ where $alpha_{Dz}$ and $alpha_{acc}$ are the $alpha$ parameters for vertical turbulent diffusion and disk gas accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا