ﻻ يوجد ملخص باللغة العربية
We introduce a new quantum protocol for solving detectable Byzantine agreement (also called detectable broadcast) between three parties, and also for solving the detectable liar detection problem. The protocol is suggested by the properties of a four-qubit entangled state, and the classical part of the protocol is simpler than that of previous proposals. In addition, we present an experimental implementation of the protocol using four-photon entanglement.
Gao et al. [Phys. Rev. Lett. 101, 208901 (2008)] have described a possible intercept-resend attack for the quantum protocol for detectable Byzantine agreement in Phys. Rev. Lett. 100, 070504 (2008). Here we describe an extension of the protocol which defeats such attacks.
In this paper we extend the Multidimensional Byzantine Agreement (MBA) Protocol arXiv:2105.13487v2, a leaderless Byzantine agreement for vectors of arbitrary values, into the emph{Cob} protocol, that works in Asynchronous Gossiping (AG) networks. Thi
It is pointed out that two separated quantum channels and three classical authenticated channels are sufficient resources to achieve detectable broadcast.
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale. Traditional quantum communication protocols consume pair-wise entanglement, which is sub-optimal for distributed tasks involvi
Utilizing the advantage of quantum entanglement swapping, a multi-party quantum key agreement protocol with authentication is proposed. In this protocol, a semi-trusted third party is introduced, who prepares Bell states, and sends one particle to mu