ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities

122   0   0.0 ( 0 )
 نشر من قبل Daniel Apai Dr
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The commonality of collisionally replenished debris around main sequence stars suggests that minor bodies are frequent around Sun-like stars. Whether or not debris disks in general are accompanied by planets is yet unknown, but debris disks with large inner cavities - perhaps dynamically cleared - are considered to be prime candidates for hosting large-separation massive giant planets. We present here a high-contrast VLT/NACO angular differential imaging survey for eight such cold debris disks. We investigated the presence of massive giant planets in the range of orbital radii where the inner edge of the dust debris is expected. Our observations are sensitive to planets and brown dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of the target star. Our observations did not identify any planet candidates. We compare the derived planet mass upper limits to the minimum planet mass required to dynamically clear the inner disks. While we cannot exclude that single giant planets are responsible for clearing out the inner debris disks, our observations constrain the parameter space available for such planets. The non-detection of massive planets in these evacuated debris disks further reinforces the notion that the giant planet population is confined to the inner disk (<15 AU).

قيم البحث

اقرأ أيضاً

We describe a joint high contrast imaging survey for planets at Keck and VLT of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets . We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars which do not show infrared excesses. We assumed a double power law distribution in mass and semi-major axis of the form f(m,a) = $Cm^{alpha}a^{beta}$, where we adopted power law values and logarithmically flat values for the mass and semi-major axis of planets. We find that the frequency of giant planets with masses 5-20 $M_{rm Jup}$ and separations 10-1000 AU around stars with debris disks is 6.27% (68% confidence interval 3.68 - 9.76%), compared to 0.73% (68% confidence interval 0.20 - 1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples.
We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk st ructures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.
We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have fou nd 13 stars showing infrared excesses at either 12 and/or 22 microns. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~ doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planets semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
115 - Kacper Kornet 2004
We present the first results from simulations of processes leading to planet formation in protoplanetary disks with different metallicities. For a given metallicity, we construct a two-dimensional grid of disk models with different initial masses and radii ($M_0$, $R_0$). For each disk, we follow the evolution of gas and solids from an early evolutionary stage, when all solids are in the form of small dust grains, to the stage when most solids have condensed into planetesimals. Then, based on the core accretion - gas capture scenario, we estimate the planet-bearing capability of the environment defined by the final planetesimal swarm and the still evolving gaseous component of the disk. We define the probability of planet-formation, $P_p$, as the normalized fractional area in the ($M_0$, $log R_0$) plane populated by disks that have formed planets inside 5 AU. With such a definition, and under the assumption that the population of planets discovered at $R$ $<$ 5 AU is not significantly contaminated by planets that have migrated from $R$ $>$ 5 AU, our results agree fairly well with the observed dependence between the probability that a star harbors a planet and the stars metal content. The agreement holds for the disk viscosity parameter $alpha$ ranging from $10^{-3}$ to $10^{-2}$, and it becomes much poorer when the redistribution of solids relative to the gas is not allowed for during the evolution of model disks.
We present infrared interferometric observations of the inner regions of two A-star debris disks, beta Leo and zeta Lep, using the FLUOR instrument at the CHARA interferometer on both short (30 m) and long (>200 m) baselines. For the target stars, th e short baseline visibilities are lower than expected for the stellar photosphere alone, while those of a check star, delta Leo, are not. We interpret this visibility offset of a few percent as a near-infrared excess arising from dust grains which, due to the instrumental field of view, must be located within several AU of the central star. For beta Leo, the near-infrared excess producing grains are spatially distinct from the dust which produces the previously known mid-infrared excess. For zeta Lep, the near-infrared excess may be spatially associated with the mid-infrared excess producing material. We present simple geometric models which are consistent with the near and mid-infrared excess and show that for both objects, the near-infrared producing material is most consistent with a thin ring of dust near the sublimation radius with typical grain sizes smaller than the nominal radiation pressure blowout radius. Finally, we discuss possible origins of the near-infrared emitting dust in the context of debris disk evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا