ﻻ يوجد ملخص باللغة العربية
We demonstrated the cancellation of the external magnetic field by the nuclear field at one edge of the nuclear polarization bistability in single InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives the precise value of the hole g-factor. By combining with the exciton g-factor that is obtained from the Zeeman splitting for linearly polarized excitation, the magnitude and sign of the electron and hole g-factors in the growth direction are evaluated.
The electron and hole g factors are the key quantities for the spin manipulations in semiconductor quantum nanostructures. However, for the individual nanostructures, the separate determination including the signs of those g factors is difficult by u
Electrically tunable g-factors in quantum dots are highly desirable for applications in quantum computing and spintronics. We report giant modulation of the hole g-factor in a SiGe nanocrystal when an electric field is applied to the nanocrystal alon
We report the hysteresis of optically-pumped nuclear spin polarization and the degree of circular polarization of photoluminescence on the excitation power and electron spin polarization in single InAlAs quantum dots. By increasing (or decreasing) th
A detailed study of the $g$-factor anisotropy of electrons and holes in InAs/In$_{0.53}$Al$_{0.24}$Ga$_{0.23}$As self-assembled quantum dots emitting in the telecom spectral range of $1.5-1.6$ $mu$m (around 0.8 eV photon energy) is performed by time-
We report a high-resolution photocurrent (PC) spectroscopy of a single self-assembled InAs/GaAs quantum dot (QD) embedded in an n-i-Schottky device with an applied vector magnetic field. The PC spectra of positively charged exciton (X$^+$) and neutra