ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Quantum Computation Based-on Small Quantum Registers

66   0   0.0 ( 0 )
 نشر من قبل Liang Jiang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe and analyze an efficient register-based hybrid quantum computation scheme. Our scheme is based on probabilistic, heralded optical connection among local five-qubit quantum registers. We assume high fidelity local unitary operations within each register, but the error probability for initialization, measurement, and entanglement generation can be very high (~5%). We demonstrate that with a reasonable time overhead our scheme can achieve deterministic non-local coupling gates between arbitrary two registers with very high fidelity, limited only by the imperfections from the local unitary operation. We estimate the clock cycle and the effective error probability for implementation of quantum registers with ion-traps or nitrogen-vacancy (NV) centers. Our new scheme capitalizes on a new efficient two-level pumping scheme that in principle can create Bell pairs with arbitrarily high fidelity. We introduce a Markov chain model to study the stochastic process of entanglement pumping and map it to a deterministic process. Finally we discuss requirements for achieving fault-tolerant operation with our register-based hybrid scheme, and also present an alternative approach to fault-tolerant preparation of GHZ states.

قيم البحث

اقرأ أيضاً

Experimental groups are now fabricating quantum processors powerful enough to execute small instances of quantum algorithms and definitively demonstrate quantum error correction that extends the lifetime of quantum data, adding urgency to architectur al investigations. Although other options continue to be explored, effort is coalescing around topological coding models as the most practical implementation option for error correction on realizable microarchitectures. Scalability concerns have also motivated architects to propose distributed memory multicomputer architectures, with experimental efforts demonstrating some of the basic building blocks to make such designs possible. We compile the latest results from a variety of different systems aiming at the construction of a scalable quantum computer.
Distributed quantum computation requires quantum operations that act over a distance on error-correction encoded states of logical qubits, such as the transfer of qubits via teleportation. We evaluate the performance of several quantum error correcti on codes, and find that teleportation failure rates of one percent or more are tolerable when two levels of the [[23,1,7]] code are used. We present an analysis of performing quantum error correction (QEC) on QEC-encoded states that span two quantum computers, including the creation of distributed logical zeroes. The transfer of the individual qubits of a logical state may be multiplexed in time or space, moving serially across a single link, or in parallel across multiple links. We show that the performance and reliability penalty for using serial links is small for a broad range of physical parameters, making serial links preferable for a large, distributed quantum multicomputer when engineering difficulties are considered. Such a multicomputer will be able to factor a 1,024-bit number using Shors algorithm with a high probability of success.
The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence) and qubits interacting collectively with the same reservoir (`collective decoherence). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of $both$ types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour (recoherence) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the systems Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.
Quantum computation offers a promising new kind of information processing, where the non-classical features of quantum mechanics can be harnessed and exploited. A number of models of quantum computation exist, including the now well-studied quantum c ircuit model. Although these models have been shown to be formally equivalent, their underlying elementary concepts and the requirements for their practical realization can differ significantly. The new paradigm of measurement-based quantum computation, where the processing of quantum information takes place by rounds of simple measurements on qubits prepared in a highly entangled state, is particularly exciting in this regard. In this article we discuss a number of recent developments in measurement-based quantum computation in both fundamental and practical issues, in particular regarding the power of quantum computation, the protection against noise (fault tolerance) and steps toward experimental realization. Moreover, we highlight a number of surprising connections between this field and other branches of physics and mathematics.
In a large-scale quantum computer, the cost of communications will dominate the performance and resource requirements, place many severe demands on the technology, and constrain the architecture. Unfortunately, fault-tolerant computers based entirely on photons with probabilistic gates, though equipped with built-in communication, have very large resource overheads; likewise, computers with reliable probabilistic gates between photons or quantum memories may lack sufficient communication resources in the presence of realistic optical losses. Here, we consider a compromise architecture, in which semiconductor spin qubits are coupled by bright laser pulses through nanophotonic waveguides and cavities using a combination of frequent probabilistic and sparse determinstic entanglement mechanisms. The large photonic resource requirements incurred by the use of probabilistic gates for quantum communication are mitigated in part by the potential high-speed operation of the semiconductor nanophotonic hardware. The system employs topological cluster-state quantum error correction for achieving fault-tolerance. Our results suggest that such an architecture/technology combination has the potential to scale to a system capable of attacking classically intractable computational problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا