ﻻ يوجد ملخص باللغة العربية
We study the spectral properties of charge density wave (CDW) phase of the half-filled spinless Falicov-Kimball model within the framework of the Dynamical Mean Field Theory. We present detailed results for the spectral function in the CDW phase as function of temperature and $U$. We show how the proximity of the non-fermi liquid phase affects the CDW phase, and show that there is a region in the phase diagram where we get a CDW phase without a gap in the spectral function. This is a radical deviation from the mean-field prediction where the gap is proportional to the order parameter.
Nonequilibrium dynamical mean-field theory (DMFT) is developed for the case of the charge-density-wave ordered phase. We consider the spinless Falicov-Kimball model which can be solved exactly. This strongly correlated system is then placed in an uni
We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including its dependence on all three frequencies, the full vertex and all reducible vertices. This allows us to calculate the self energy in diagramma
We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square latt
The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) s
A numerical diagonalization technique with canonical Monte-Carlo simulation algorithm is used to study the phase transitions from low temperature (ordered) phase to high temperature (disordered) phase of spinless Falicov-Kimball model on a triangular