ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in accretion discs : from the Galactic Center to Active Galactic Nuclei

74   0   0.0 ( 0 )
 نشر من قبل Suzy Collin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Keplerian accretion discs around massive black holes (MBHs) are gravitationally unstable beyond a few hundredths of parsec and should collapse to form stars. Indeed an accretion/star formation episode took place a few millions years ago in the Galactic Center (GC). This raises the question of how the disc can survive in AGN and quasars and continue to transport matter towards the black hole. We study the accretion/star formation process, with one aim in mind, to show that a spectrum similar to the observed AGN one can be produced by the disc. We compute models of stationary accretion discs, both continuous and clumpy. Continuous discs must be maintained in a state of marginal stability for the rate of star formation to remain modest, so they require additional heating and transport of angular momentum. Non-viscous heating can be provided by stellar illumination, but momentum transport by supernovae is insufficient to sustain a marginal state, except at the very periphery of the disc. In clumpy discs it is possible to account for the required accretion rate through interactions between clouds, but this model is unsatisfactory as its parameters are tightly constrained without any physical justification. Finally one must appeal to non-stationary discs with intermittent accretion episodes like those that occurred in the GC, but such a model is probably not applicable to luminous high redshift quasars neither to radio-loud quasars.

قيم البحث

اقرأ أيضاً

Warm coronae, thick ($tau_{mathrm{T}}approx 10$-$20$, where $tau_{mathrm{T}}$ is the Thomson depth) Comptonizing regions with temperatures of $sim 1$ keV, are proposed to exist at the surfaces of accretion discs in active galactic nuclei (AGNs). By c ombining with the reflection spectrum, warm coronae may be responsible for producing the smooth soft excess seen in AGN X-ray spectra. This paper studies how a warm corona must adjust in order to sustain the soft excess through large changes in the AGN flux. Spectra from one-dimensional constant density and hydrostatic warm coronae models are calculated assuming the illuminating hard X-ray power-law, gas density, Thomson depth and coronal heating strength vary in response to changes in the accretion rate. We identify models that produce warm coronae with temperatures between $0.3$ and $1.1$ keV, and measure the photon indices and emitted fluxes in the $0.5$-$2$ keV and $2$-$10$ keV bands. Correlations and anti-correlations between these quantities depend on the evolution and structure of the warm corona. Tracing the path that an AGN follows through these correlations will constrain how warm coronae are heated and connected to the accretion disc. Variations in the density structure and coronal heating strength of warm coronae will lead to a variety of soft excess strengths and shapes in AGNs. A larger accretion rate will, on average, lead to a warm corona that produces a stronger soft excess, consistent with observations of local Seyfert galaxies.
104 - J.-M. Wang , C.-S. Yan , H.-Q. Gao 2010
Self-gravitating accretion disks collapse to star-forming(SF) regions extending to the inner edge of the dusty torus in active galactic nuclei (AGNs). A full set of equations including feedback of star formation is given to describe the dynamics of t he regions. We explore the role of supernovae explosion (SNexp), acting to excite turbulent viscosity, in the transportation of angular momentum in the regions within 1pc scale. We find that accretion disks with typical rates in AGNs can be driven by SNexp in the regions and metals are produced spontaneously. The present model predicts a metallicity--luminosity relationship consistent with that observed in AGNs. As relics of SF regions, a ring (or belt) consisting of old stars remains for every episode of supermassive black hole activity. We suggest that multiple stellar rings with random directions interact and form a nuclear star cluster after episodes driven by star formation.
120 - Brent Groves IoA 2007
Using the large emission line galaxy sample from the Sloan Digital Sky Survey we show that Star forming galaxies, Seyferts, and low-ionization nuclear emission-line regions (LINERs) form clearly separated branches on the standard optical diagnostic d iagrams. We derive a new empirical classification scheme which cleanly separates these emission-line galaxies, using strong optical emission lines. Using this classification we identify a few distinguishing host galaxy properties of each class, which, along with the emission line analysis, suggest continuous evolution from one class to another. As a final note, we introduce models of both Starforming galaxies and AGN narrow line regions which can explain the distribution of galaxies on standard emission line ratio diagrams, and possibly suggest new diagnostics across the emission spectrum.
164 - Jens Kauffmann 2016
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge about the Galactic Center. Particular attention is paid to suppressed star formation in the Galactic Center and how it might result from shallow density gradients in molecular clouds.
We present an analysis of the relation between star formation rate (SFR) surface density (sigmasfr) and mass surface density of molecular gas (sigmahtwo), commonly referred to as the Kennicutt-Schmidt (K-S) relation, at its intrinsic spatial scale, i .e. the size of giant molecular clouds (10-150 pc), in the central, high-density regions of four nearby low-luminosity active galactic nuclei (AGN). We used interferometric IRAM CO(1-0) and CO(2-1), and SMA CO(3-2) emission line maps to derive sigmahtwo and HST-Halpha images to estimate sigmasfr. Each galaxy is characterized by a distinct molecular SF relation at spatial scales between 20 to 200 pc. The K-S relations can be sub-linear, but also super-linear, with slopes ranging from 0.5 to 1.3. Depletion times range from 1 and 2Gyr, compatible with results for nearby normal galaxies. These findings are valid independently of which transition, CO(1-0), CO(2-1), or CO(3-2), is used to derive sigmahtwo. Because of star-formation feedback, life-time of clouds, turbulent cascade, or magnetic fields, the K-S relation might be expected to degrade on small spatial scales (<100 pc). However, we find no clear evidence for this, even on scales as small as 20 pc, and this might be because of the higher density of GMCs in galaxy centers which have to resist higher shear forces. The proportionality between sigmahtwo and sigmasfr found between 10 and 100 Msun/pc2 is valid even at high densities, 10^3 Msun/pc2. However, by adopting a common CO-to-H2 conversion factor (alpha_CO), the central regions of the galaxies have higher sigmasfr for a given gas column than those expected from the models, with a behavior that lies between the mergers/high-redshift starburst systems and the more quiescent star-forming galaxies, assuming that the first ones require a lower value of alpha_CO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا