ترغب بنشر مسار تعليمي؟ اضغط هنا

Hawking-Page Phase Transition of black Dp-branes and R-charged black holes with an IR Cutoff

145   0   0.0 ( 0 )
 نشر من قبل Li-Ming Cao
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the confinement-deconfinement phase transition of supersymmetric Yang-Mills theories with 16 supercharges in various dimensions can be realized through the Hawking-Page phase transition between the near horizon geometries of black Dp-branes and BPS Dp-branes by removing a small radius region in the geometry in order to realize a confinement phase, which generalizes the Herzogs discussion for the holographic hard-wall AdS/QCD model. Removing a small radius region in the gravitational dual corresponds to introducing an IR cutoff in the dual field theory. We also discuss the Hawking-Page phase transition between thermal $AdS_5$, $AdS_4$, $AdS_7$ spaces and R-charged AdS black holes coming from the spherical reduction of the decoupling limit of rotating D3-, M2-, and M5- branes in type IIB supergravity and 11 dimensional supergravity in grand canonical ensembles, where the IR cutoff also plays a crucial role in the existence of the phase transition.

قيم البحث

اقرأ أيضاً

We study the phase structure and equilibrium state space geometry of R-charged black holes in $D = 5$, 4 and 7 and the corresponding rotating $D3$, $M2$ and $M5$ branes. For various charge configurations of the compact black holes in the canonical en semble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.
119 - Anurag Sahay , Rishabh Jha 2017
We obtain the Ruppeiner geometry associated with the non-extended state space ($Lambda$ constant) of the charged Gauss-Bonnet AdS (GB-AdS) black holes and confirm that the state space Riemannian manifold becomes strongly curved in regions where the b lack hole system develops strong statistical correlations in the grand canonical ensemble ($M$ and $Q$ fluctuating). We establish the exact proportionality between the state space scalar curvature $R$ and the inverse of the singular free energy near the isolated critical point for the grand canonical ensemble in spacetime dimension $d=5$, thus hopefully moving a step closer to the agenda of a concrete physical interpretation of $R$ for black holes. On the other hand, we show that while $R$ signals the Davies transition points (which exist in GB-AdS black holes for $d ge 6$) through its divergence, it does not scale as the inverse of the singular free energy there. Furthermore, adapting to the black hole case the ideas developed in cite{rupp2} in the context of pure fluids, we find that the state space geometry encodes phase coexistence and first order transitions, identifies the asymptotically critical region and even suggests a Widom line like crossover regime in the supercritical region for $5-d$ case. The sign of $R$ appears to imply a significant difference between the microscopic structure of the small and the large black hole branches in $d=5$. We show that thermodynamic geometry informs the microscopic nature of coexisting thermal GB-AdS and black hole phases near the Hawking-Page phase transition.
Static oscillating bounces in Schwarzschild de Sitter spacetime are investigated. The oscillating bounce with many oscillations gives a super-thick bubble wall, for which the total vacuum energy increases while the mass of the black hole decreases du e to the conservation of Arnowitt-Deser-Misner (ADM) mass. We show that the transition rate of such an up-tunneling consuming the seed black hole is higher than that of the Hawking-Moss transition. The correspondence of analyses in the static and global coordinates in the Euclidean de Sitter space is also investigated.
It is well known that the Reissner-Norstrom solution of Einstein-Maxwell theory cannot be cylindrically extended to higher dimension, as with the black hole solutions in vacuum. In this paper we show that this result is circumvented in Lovelock gravi ty. We prove that the theory containing only the quadratic Lovelock term, the Gauss-Bonnet term, minimally coupled to a $U(1)$ field, admits homogeneous black string and black brane solutions characterized by the mass, charge and volume of the flat directions. We also show that theories containing a single Lovelock term of order $n$ in the Lagrangian coupled to a $(p-1)$-form field admit simple oxidations only when $n$ equals $p$, giving rise to new, exact, charged black branes in higher curvature gravity. For General Relativity this stands for a Lagrangian containing the Einstein-Hilbert term coupled to a massless scalar field, and no-hair theorems in this case forbid the existence of black branes. In all these cases the field equations acquire an invariance under a global scaling scale transformation of the metric. As explicit examples we construct new magnetically charged black branes for cubic Lovelock theory coupled to a Kalb-Ramond field in dimensions $(3m+2)+q$, with $m$ and $q$ integers, and the latter denoting the number of extended flat directions. We also construct dyonic solutions in quartic Lovelock theory in dimension $(4m+2)+q$.
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten sor and the charge current for these configurations up to second order in the boundary derivative expansion. We find a new term in the charge current when there is a bulk Chern-Simons interaction thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes and boundary hydrodynamics. We have also confirmed that all our expressions are covariant under boundary Weyl-transformations as expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا