ترغب بنشر مسار تعليمي؟ اضغط هنا

Pauli spin-blockade in an InAs nanowire double quantum dot

242   0   0.0 ( 0 )
 نشر من قبل Andreas Pfund
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure transport at finite bias through a double quantum dot formed by top-gates in an InAs nanowire. Pauli spin-bockade is confirmed with several electrons in the dot. This is expected due to the small exchange interactions in InAs and the large singlet-triplet splitting, which can be measured and tuned by a gate voltage.



قيم البحث

اقرأ أيضاً

Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport expe riments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.
We investigate the triplet-singlet relaxation in a double quantum dot defined by top-gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong inter-dot cou pling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a charateristic bistability of the spin-non conserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation.
150 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-po tential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
110 - S. Baba , S. Matsuo , H. Kamata 2017
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previou sly defined gate region. By tuning the junction with the finger bottom gates, we confirmed the formation of parallel double quantum dots, one in each NW, with a finite electrostatic coupling between each other. With the fabrication technique established in this study, devices proposed for more advanced experiments, such as Cooper-pair splitting and the observation of parafermions, can be realized.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant um dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا