ﻻ يوجد ملخص باللغة العربية
We investigate spin conductance in zigzag graphene nanoribbons and propose a spin injection mechanism based only on graphitic nanostructures. We find that nanoribbons with atomically straight, symmetric edges show zero spin conductance, but nonzero spin Hall conductance. Only nanoribbons with asymmetrically shaped edges give rise to a finite spin conductance and can be used for spin injection into graphene. Furthermore, nanoribbons with rough edges exhibit mesoscopic spin conductance fluctuations with a universal value of $mathrm{rms} G_mathrm{s}approx 0.4 e/4pi$.
We theoretically investigate the one-color injection currents and shift currents in zigzag graphene nanoribbons with applying a static electric field across the ribbon, which breaks the inversion symmetry to generate nonzero second order optical resp
Knowledge of the topology of the electronic ground state of materials has led to deep insights to novel phenomena such as the integer quantum Hall effect and fermion-number fractionalization, as well as other properties of matter. Joining two insulat
We report the first measurements of spin injection in to graphene through a 20 nm thick tungsten disulphide (WS$_2$) layer, along with a modified spin relaxation time ({tau}s) in graphene in the WS$_2$ environment, via spin-valve and Hanle spin-prece
In this review we discuss spin and charge transport properties in graphene-based single-layer and few-layer spin-valve devices. We give an overview of challenges and recent advances in the field of device fabrication and discuss two of our fabricatio
Electrical control of spin transport is promising for achieving new device functionalities. Here we calculate the propagation of spin currents in a graphene-based spin-current demultiplexer under the effect of drift currents. We show that, using spin