ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Ray Physics with ACORDE at LHC

325   0   0.0 ( 0 )
 نشر من قبل Carmine Pagliarone
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

قيم البحث

اقرأ أيضاً

80 - F. Hubaut 2006
The new CERN proton-proton collider, the LHC, is about to start in 2007 its data taking. Millions of top quarks will be available out of these data, allowing to perform a wide range of precision measurements and searches for new physics. An overview of the planned top physics program accessible with ttbar events is given for the ATLAS and CMS experiments. A particular emphasis is put on the precision measurements of the top mass, top polarization and searches for new physics in top production and decay.
AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-$x$ physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the h ighly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as $sqrt{s_{NN}}$ = 115 GeV in pp/pA and $sqrt{s_{NN}}$ = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.
A rapidity gap program with great potential can be realized at the Large Hadron Collider, LHC, by adding a few simple forward shower counters (FSCs) along the beam line on both sides of the main central detectors, such as CMS. Measurements of single diffractive cross sections down to the lowest masses can be made with an efficient level-1 trigger. Exceptionally, the detectors also make feasible the study of Central Diffractive Excitation, and in particular the reaction g + g to g + g, in the color singlet channel, effectively using the LHC as a gluon-gluon collider.
ACORDE is one of the ALICE detectors, presently under construction at CERN. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and, together with other AL ICE sub-detectors, will provide precise information on cosmic rays with primary energies around $10^{15} div 10^{-17}$ eV. Here we describe the design review of ACORDE along with the present status and integration into ALICE.
ACORDE, the ALICE COsmic Ray DEtector is one of the ALICE detectors, presently under construction. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. This array will act as Level 0 cosmic ray trigger and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around $10^{15-17}$ eV. In this paper we will describe the ACORDE detector, trigger design and electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا