ترغب بنشر مسار تعليمي؟ اضغط هنا

The intracluster magnetic field power spectrum in Abell 2382

39   0   0.0 ( 0 )
 نشر من قبل Daria Guidetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this work is to put constraints on the strength and structure of the magnetic field in the cluster of galaxies A2382. We investigate the relationship between magnetic field and Faraday rotation effects in the cluster, using numerical simulations as a reference for the observed polarization properties. For this purpose we present Very Large Array observations at 20 cm and 6 cm of two polarized radio sources embedded in A2382, and we obtained detailed rotation measure images for both of them. We simulated random three-dimensional magnetic field models with different power spectra and thus produced synthetic rotation measure images. By comparing our simulations with the observed polarization properties of the radio sources, we can determine the strength and the power spectrum of intra-cluster magnetic field fluctuations that best reproduce the observations. The data are consistent with a power law magnetic field power spectrum with the Kolmogorov index $n=11/3$, while the outer scale of the magnetic field fluctuations is of the order of 35 kpc. The average magnetic field strength at the cluster center is about 3 $mu$G and decreases in the external region as the square root of the electron gas density. The average magnetic field strength in the central 1 Mpc$^{3}$ is about 1 $mu$G.

قيم البحث

اقرأ أيضاً

55 - F. Govoni , M. Murgia , V. Vacca 2017
We study the intra-cluster magnetic field in the poor galaxy cluster Abell 194 by complementing radio data, at different frequencies, with data in the optical and X-ray bands. We analyze new total intensity and polarization observations of Abell 194 obtained with the Sardinia Radio Telescope (SRT). We use the SRT data in combination with archival Very Large Array observations to derive both the spectral aging and Rotation Measure (RM) images of the radio galaxies 3C40A and 3C40B embedded in Abell 194. The optical analysis indicates that Abell 194 does not show a major and recent cluster merger, but rather agrees with a scenario of accretion of small groups. Under the minimum energy assumption, the lifetimes of synchrotron electrons in 3C40B measured from the spectral break are found to be 157 Myrs. The break frequency image and the electron density profile inferred from the X-ray emission are used in combination with the RM data to constrain the intra-cluster magnetic field power spectrum. By assuming a Kolmogorov power law power spectrum, we find that the RM data in Abell 194 are well described by a magnetic field with a maximum scale of fluctuations of Lambda_max=64 kpc and a central magnetic field strength of <B0>=1.5 microG. Further out, the field decreases with the radius following the gas density to the power of eta=1.1. Comparing Abell 194 with a small sample of galaxy clusters, there is a hint of a trend between central electron densities and magnetic field strengths.
The angular power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect is highly sensitive to cosmological parameters such as sigma_8 and Omega_m, but its use as a precision cosmological probe is hindered by the astrophysical uncertainties in model ing the gas pressure profile in galaxy groups and clusters. In this paper we assume that the relevant cosmological parameters are accurately known and explore the ability of current and future tSZ power spectrum measurements to constrain the intracluster gas pressure or the evolution of the gas mass fraction, f_gas. We use the CMB bandpower measurements from the South Pole Telescope and a Bayesian Markov Chain Monte Carlo (MCMC) method to quantify deviations from the standard, universal gas pressure model. We explore analytical model extensions that bring the predictions for the tSZ power into agreement with experimental data. We find that a steeper pressure profile in the cluster outskirts or an evolving f_gas have mild-to-severe conflicts with experimental data or simulations. Varying more than one parameter in the pressure model leads to strong degeneracies that cannot be broken with current observational constraints. We use simulated bandpowers from future tSZ survey experiments, in particular a possible 2000 deg^2 CCAT survey, to show that future observations can provide almost an order of magnitude better precision on the same model parameters. This will allow us to break the current parameter degeneracies and place simultaneous constraints on the gas pressure profile and its redshift evolution, for example.
116 - Renato A. Dupke 1999
Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found by White et al. (1994) in a joint analysis of Ginga LAC and Einstein SSS spectr a. Simultaneous analysis of spectra from all ASCA instruments (SIS + GIS) shows that the iron abundance is 0.36 +- 0.03 solar 3-12 from the center of the cluster and rises ~50% to 0.53 +- 0.04 solar within the central 2. The F-test shows that this abundance gradient is significant at the >99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of SN Ia and SN II to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SN Ia increases toward the cluster center, with SN Ia accounting for ~50% of the iron mass 3-12 from the center and ~70% within 2. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SN Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies, or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.
Hubble Space Telescope photometry from the ACS/WFC and WFPC2 cameras is used to detect and measure globular clusters (GCs) in the central region of the rich Perseus cluster of galaxies. A detectable population of Intragalactic GCs is found extending out to at least 500 kpc from the cluster center. These objects display luminosity and color (metallicity) distributions that are entirely normal for GC populations. Extrapolating from the limited spatial coverage of the HST fields, we estimate very roughly that the entire Perseus cluster should contain ~50000 or more IGCs, but a targetted wide-field survey will be needed for a more definitive answer. Separate brief results are presented for the rich GC systems in NGC 1272 and NGC 1275, the two largest Perseus ellipticals. For NGC 1272 we find a specific frequency S_N = 8, while for the central giant NGC 1275, S_N ~ 12. In both these giant galaxies, the GC colors are well matched by bimodal distributions, with the majority in the blue (metal-poor) component. This preliminary study suggests that Perseus is a prime target for a more comprehensive deep imaging survey of Intragalactic GCs.
We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We argue that this approach is necessary (a) to properly normalize dynamo action to the available intra-cluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intra-cluster medium. We find that while the properties of intra-cluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfven speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming the idea that magnetic field in todays galaxy clusters is a record of its past turbulent activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا