ترغب بنشر مسار تعليمي؟ اضغط هنا

EM Cygni: a study of its eclipse timings

96   0   0.0 ( 0 )
 نشر من قبل Szilard Csizmadia
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EM Cygni is a Z Cam-subtype eclipsing dwarf nova. Its orbital period variations were reported in the past but the results were in conflict to each other while other studies allowed the possibility of no period variation. In this study we report accurate new times of minima of this eclipsing binary and update its O-C diagram. We also estimate the mass transfer rate in EM Cygni system and conclude that the mass transfer is far from the critical value. The mass transfer rate determined from the eclipse timings is in agreement with the spectroscopically determined value.



قيم البحث

اقرأ أيضاً

79 - R. C. North 1999
We have discovered that the spectrum of the well-known dwarf nova EM Cyg is contaminated by light from a K2-5V star (in addition to the K-type mass donor star). The K2-5V star contributes approximately 16 per cent of the light from the system and if not taken into account has a considerable effect upon radial velocity measurements of the mass donor star. We obtain a new radial velocity amplitude for the mass donor star of K2 = 202 +/- 3 km/s, which compares with the value of K2 = 135 +/- 3 km/s obtained in Stover, Robinson & Nathers classic 1981 study of EM Cyg. The revised value of the amplitude combined with a measurement of rotational broadening of the mass donor vsini = 140 +/- 6 km/s, leads to a new mass ratio of q = M2/M1 = 0.88 +/- 0.05. This solves a long standing problem with EM Cyg because Stover et al.s measurements indicated a mass ratio q > 1, a value which should have led to dynamically unstable mass transfer for the secondary mass deduced by Stover et al. The revised value of the mass ratio combined with the orbital inclination i = 67 +/- 2 degrees leads to masses of 0.99 +/- 0.12 Msun and 1.12 +/- 0.08 Msun for the mass donor and white dwarf respectively. The mass donor is evolved, since it has a later spectral type (K3) than its mass would imply. We discuss whether the K star could be physically associated with EM Cyg or not, and present the results of the spectroscopic study.
We report our complete database of X-ray eclipse timings of the low mass X-ray binary EXO0748-676 observed by the Rossi X-Ray Timing Explorer (RXTE) satellite. As of this writing we have accumulated 443 full X-ray eclipses, 392 of which have been obs erved with the Proportional Counter Array on RXTE. These include both observations where an eclipse was specifically targeted and those eclipses found in the RXTE data archive. Eclipse cycle count has been maintained since the discovery of the EXO0748-676 system in February 1985. We describe our observing and analysis techniques for each eclipse and describe improvements we have made since the last compilation by Wolff et al. (2002). The principal result of this paper is the database containing the timing results from a seven-parameter fit to the X-ray light curve for each observed eclipse along with the associated errors in the fitted parameters. Based on the standard O-C analysis, EXO0748-676 has undergone four distinct orbital period epochs since its discovery. In addition, EXO0748-676 shows small-scale events in the O-C curve that are likely due to short-lived changes in the secondary star.
140 - Zhibin Dai , Shengbang Qian 2010
Combining with our newest CCD times of light minimum of EM Cygni, all 45 available times of light minimum including 7 data with large scatters are compiled and the updated O-C analysis is made. The bestfit for the O-C diagram of EM Cygni is a quadrat ic-plus-sinusoidal fit. The secular orbital period decrease rate -2.5(pm 0.3)x10^{-11} s s^{-1} means that magnetic braking effect with a rate of mass loss via stellar wind, 2.3x10^{-10}Msunyr^{-1}, is needed for explaining the observed orbital period decrease. Moreover, for explaining the significant cyclical period change with a period of sim 17.74(pm 0.01)yr shown in the O-C diagram, magnetic activity cycles and light travel-time effect are discussed in detail. The O-C diagram of EM Cygni cannot totally rule the possibility of multi-periodic modulation out due to the gaps presented after 25000 cycles. Based on the hypothesis of a K-type third star in literature, light trave-time effect may be a more plausible explanation. However, the low orbital inclination of the third body (sim 7.4 degree) suggests that the hypothetic K-type third star may be captured by EM Cygni. But assuming the spectral contamination from a block of circumbinary material instead of a K-type third star, the third star may be a brown dwarf in case of the coplanar orbit with parent binary.
We present 7 eclipse timings of the low mass X-ray binary EXO0748-676 obtained with the USA experiment during 1999-2000 as well as 122 eclipse timings obtained with RXTE during 1996-2000. According to our analysis, the mean orbital period has increas ed by ~8 ms between the pre-RXTE era (1985-1990) and the RXTE/USA era (1996-2000). This corresponds to an orbital period derivative of P(orb)/(dP(orb)/dt)~2x10^7 years. However, neither a constant orbital period derivative nor any other simple ephemeris provides an acceptable fit to the data: individual timings of eclipse centers have residuals of up to 15 or more seconds away from our derived smooth ephemerides. When we consider all published eclipse timing data including those presented here, a model that includes observational measurement error, cumulative period jitter, and underlying period evolution is found to be consistent with the timing data. We discuss several physical mechanisms for LMXB orbital evolution in an effort to account for the change in orbital period and the observed intrinsic jitter in the mid-eclipse times.
A periodic variation in the pulse timings of the pulsating hot subdwarf B star CS 1246 was recently discovered via the O-C diagram and suggests the presence of a binary companion with an orbital period of two weeks. Fits to this phase variation, when interpreted as orbital reflex motion, imply CS 1246 orbits a barycenter 11 light-seconds away with a velocity of 16.6 km/s. Using the Goodman spectrograph on the SOAR telescope, we decided to confirm this hypothesis by obtaining radial velocity measurements of the system over several months. Our spectra reveal a velocity variation with amplitude, period, and phase in accordance with the O-C diagram predictions. This corroboration demonstrates that the rapid pulsations of hot subdwarf B stars can be adequate clocks for the discovery of binary companions via the pulse timing method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا