ﻻ يوجد ملخص باللغة العربية
Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN $B {}^{2} Sigma - X {}^{2} Sigma$ system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN $B {}^{2} Sigma - X {}^{2} Sigma$ system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.
The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magneti
We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the
We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into ac
We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanism for longitudinal and transverse spins in lateral spin valves, which enables to elucidate intrinsic spin transport and relaxatio
We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described b