ﻻ يوجد ملخص باللغة العربية
We describe photometry at mid-infrared passbands (1.2 - 24 microns) for a sample of 18 elliptical galaxies. All surface brightness distributions resemble de Vaucouleurs profiles, indicating that most of the emission arises from the photospheres or circumstellar regions of red giant stars. The spectral energy distribution peaks near 1.6 microns, but the half-light or effective radius has a pronounced minimum near the K band (2.15 microns). Apart from the 24 micron passband, all sample-averaged radial color profiles have measurable slopes within about twice the (K band) effective radius. Evidently this variation arises because of an increase in stellar metallicity toward the galactic cores. For example, the sampled-averaged color profile (K - 5.8 microns) has a positive slope although no obvious absorption feature is observed in spectra of elliptical galaxies near 5.8 microns. This, and the minimum in the effective radius, suggests that the K band may be anomalously luminous in metal-rich stars in galaxy cores. Unusual radial color profiles involving the 24 micron passband may suggest that some 24 micron emission comes from interstellar not circumstellar dust grains.
M32, the compact elliptical-galaxy companion to the Andromeda spiral galaxy has been imaged by the Galaxy Evolution Explorer (GALEX) in two ultraviolet bands, centered at ~1500 (FUV) and 2300 Angstroms (NUV). The imaging data have been carefully deco
The mean ages of early-type galaxies obtained from the analysis of optical spectra, give a mean age of 8 Gyr at z = 0, with 40% being younger than 6 Gyr. Independent age determinations are possible by using infrared spectra (5-21 microns), which we h
We made model fitting to the mid-to-far infrared spectral energy distributions (SEDs) for different categories of galaxies in the main extragalactic field of the {it Spitzer} First Look Survey with the aid of spectroscopic information from the Sloan
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between sta
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stel