ﻻ يوجد ملخص باللغة العربية
We have employed first principles calculations to study the electronic structure and magnetic properties of the low-dimensional phosphates, Ba2Cu(PO4)2 and Sr2Cu(PO4)2. Using the self-consistent tight-binding lin- earized muffin-tin orbital method and the Nth order muffin-tin orbital method, we have calculated the various intrachain as well as the interchain hopping parameters between the magnetic ions Cu2+ for both the com- pounds. We find that the nearest-neighbor intrachain hopping t is the dominant interaction suggesting the compounds to be indeed one dimensional. Our analysis of the band dispersion, orbital projected band struc- tures, and the hopping parameters confirms that the Cu2+-Cu2+ super-super exchange interaction takes place along the crystallographic b direction mediated by O-P-O. We have also analyzed in detail the origin of short-range exchange interaction for these systems. Our ab initio estimate of the ratio of the exchange inter- action of Sr2Cu(PO4)2 to that of Ba2Cu(PO4)2 compares excellently with available experimental results.
Large single crystals of the new compound SrMn$_2$V$_2$O$_8$ have been grown by the floating-zone method. This transition-metal based oxide is isostructural to SrNi$_2$V$_2$O$_8$, described by the tetragonal space group $I4_1cd$. Magnetic properties
The magnetic behavior of the low-dimensional phosphates (Sr,Ba)_2 Cu(PO_4)_2 and BaCuP_2O_7 was investigated by means of magnetic susceptibility and ^{31}P nuclear magnetic resonance (NMR) measurements. We present here the NMR shift K(T), the spin-la
The demonstration of superconductivity in nickelate analogues of high $T_c$ cuprates provides new perspectives on the physics of correlated electron materials. The degree to which the nickelate electronic structure is similar to that of cuprates is a
The recent discovery of Sr-doped infinite-layer nickelate $textrm{NdNiO}_2$ [D. Li et al. Nature 572, 624 (2019)] offers an exciting platform for investigating unconventional superconductivity in nickelatebased compounds. In this work, we present a f
Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultra