ﻻ يوجد ملخص باللغة العربية
In this paper, taking the view that a linear parallel interference canceller (LPIC) can be seen as a linear matrix filter, we propose new linear matrix filters that can result in improved bit error performance compared to other LPICs in the literature. The motivation for the proposed filters arises from the possibility of avoiding the generation of certain interference and noise terms in a given stage that would have been present in a conventional LPIC (CLPIC). In the proposed filters, we achieve such avoidance of the generation of interference and noise terms in a given stage by simply making the diagonal elements of a certain matrix in that stage equal to zero. Hence, the proposed filters do not require additional complexity compared to the CLPIC, and they can allow achieving a certain error performance using fewer LPIC stages. We also extend the proposed matrix filter solutions to a multicarrier DS-CDMA system, where we consider two types of receivers. In one receiver (referred to as Type-I receiver), LPIC is performed on each subcarrier first, followed by multicarrier combining (MCC). In the other receiver (called Type-II receiver), MCC is performed first, followed by LPIC. We show that in both Type-I and Type-II receivers, the proposed matrix filters outperform other matrix filters. Also, Type-II receiver performs better than Type-I receiver because of enhanced accuracy of the interference estimates achieved due to frequency diversity offered by MCC.
It is known that the capacity of parallel (multi-carrier) Gaussian point-to-point, multiple access and broadcast channels can be achieved by separate encoding for each subchannel (carrier) subject to a power allocation across carriers. In this paper
We consider transmission over a binary-input additive white Gaussian noise channel using low-density parity-check codes. One of the most popular techniques for decoding low-density parity-check codes is the linear programming decoder. In general, the
We present and study linear programming based detectors for two-dimensional intersymbol interference channels. Interesting instances of two-dimensional intersymbol interference channels are magnetic storage, optical storage and Wyners cellular networ
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the larg
This paper investigates the linear precoder design for $K$-user interference channels of multiple-input multiple-output (MIMO) transceivers under finite alphabet inputs. We first obtain general explicit expressions of the achievable rate for users in