ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmed signatures for phase transitions in heavy-ion collisions

369   0   0.0 ( 0 )
 نشر من قبل Olena Linnyk
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay of charmonium production and suppression in In+In and Pb+Pb reactions at 158 AGeV and in Au+Au reactions at sqrt(s)=200 GeV is investigated with the HSD transport approach within the `hadronic comover model and the `QGP melting scenario. The results for the J/Psi suppression and the Psi to J/Psi ratio are compared to the recent data of the NA50, NA60, and PHENIX Collaborations. We find that, at 158 AGeV, the comover absorption model performs better than the scenario of abrupt threshold melting. However, neither interaction with hadrons alone nor simple color screening satisfactory describes the data at sqrt(s)=200 GeV. A deconfined phase is clearly reached at RHIC, but a theory having the relevant degrees of freedom in this regime (strongly interacting quarks/gluons) is needed to study its transport properties.

قيم البحث

اقرأ أيضاً

We develop for charmed hadron production in relativistic heavy-ion collisions a comprehensive coalescence model that includes an extensive set of $s$ and $p$-wave hadronic states as well as the strict energy-momentum conservation, which ensures the b oost invariance of the coalescence probability and the thermal limit of the produced hadron spectrum. By combining our hadronization scheme with an advanced Langevin-hydrodynamics model that incorporates both elastic and inelastic energy loss of heavy quarks inside the dynamical quark-gluon plasma, we obtain a successful description of the $p_mathrm{T}$-integrated and differential $Lambda_c/D^0$ and $D_s/D^0$ ratios measured at RHIC and the LHC. We find that including the effect of radial flow of the medium is essential for describing the enhanced $Lambda_c/D^0$ ratio observed in relativistic heavy-ion collisions. We also find that the puzzling larger $Lambda_c/D^0$ ratio observed in Au+Au collisions at RHIC than in Pb+Pb collisions at the LHC is due to the interplay between the effects of the QGP radial flow and the charm quark transverse momentum spectrum at hadronization. Our study further suggests that charmed hadrons have larger sizes in medium than in vacuum.
We study the production of multi-charmed hadrons by recombination in heavy ion collisions by focusing on the production of $Xi_{cc}$, $Xi_{cc}^*$, $Omega_{scc}$, $Omega_{scc}^*$, $Omega_{ccc}$ baryons and X(3872) mesons. Starting from the estimation of yields for those hadrons at chemical freeze-out in both the statistical and coalescence model, we evaluate their transverse momentum distributions at mid-rapidity in the coalescence model. We show that yields of multi-charmed hadrons in heavy ion collisions at RHIC and LHC are large enough, and thereby not only multi-charmed hadrons observed so far, e.g., the $Xi_{cc}$ but also those which have not been observed yet, can be discovered sufficiently in heavy ion collisions. We also find that the transverse momentum distribution ratio between various multi-charmed hadrons sensitively reflects the interplay between quark contents of corresponding hadrons as well as the transverse momentum distribution of charm quarks at the hadronization point, and therefore we insist that studying both the transverse momentum distributions of multi-charmed hadrons themselves and transverse momentum distribution ratios between various multi-charmed hadrons provide us with useful information on hadron production mechanism involving charm quarks in heavy ion collisions.
Recent advances in Fluid Dynamical modeling of heavy ion collisions are presented, with particular attention to mesoscopic systems, QGP formation in the pre FD regime and QGP hadronization coinciding with the final freeze-out.
144 - Mike Lisa 2016
The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructu re. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr um and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا