ﻻ يوجد ملخص باللغة العربية
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomena is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.
We propose a novel method to quantify the clustering behavior in a complex time series and apply it to a high-frequency data of the financial markets. We find that regardless of used data sets, all data exhibits the volatility clustering properties,
The distribution of the return intervals $tau$ between volatilities above a threshold $q$ for financial records has been approximated by a scaling behavior. To explore how accurate is the scaling and therefore understand the underlined non-linear mec
We investigate the probability distribution of the volatility return intervals $tau$ for the Chinese stock market. We rescale both the probability distribution $P_{q}(tau)$ and the volatility return intervals $tau$ as $P_{q}(tau)=1/bar{tau} f(tau/bar
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, an
We develop a behavioral model for liquidity and volatility based on empirical regularities in trading order flow in the London Stock Exchange. This can be viewed as a very simple agent based model in which all components of the model are validated ag