ﻻ يوجد ملخص باللغة العربية
We derive the form of the infrared gluon propagator by proving a mapping in the infrared of the quantum Yang-Mills and $lambdaphi^4$ theories. The equivalence is complete at a classical level. But while at a quantum level, the correspondence is spoiled by quantum fluctuations in the ultraviolet limit, we prove that it holds in the infrared where the coupling constant happens to be very large. The infrared propagator is then obtained from the quantum field theory of the scalar field producing a full spectrum. The results are in fully agreement with recent lattice computations. We get a finite propagator at zero momentum, the ghost propagator going to infinity as $1/p^{2+2kappa}$ with $kappa=0$.
We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent latt
We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the result
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon p
Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator b