ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit representation of Green function for 3Dimensional exterior Helmholtz equation

250   0   0.0 ( 0 )
 نشر من قبل Evgeny Lakshtanov L
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have constructed a sequence of solutions of the Helmholtz equation forming an orthogonal sequence on a given surface. Coefficients of these functions depend on an explicit algebraic formulae from the coefficient of the surface. Moreover, for exterior Helmholtz equation we have constructed an explicit normal derivative of the Dirichlet Green function. In the same way the Dirichlet-to-Neumann operator is constructed. We proved that normalized coefficients are uniformly bounded from zero.



قيم البحث

اقرأ أيضاً

Multipole matrix elements of Green function of Laplace equation are calculated. The multipole matrix elements of Green function in electrostatics describe potential on a sphere which is produced by a charge distributed on the surface of a different ( possibly overlapping) sphere of the same radius. The matrix elements are defined by double convolution of two spherical harmonics with the Green function of Laplace equation. The method we use relies on the fact that in the Fourier space the double convolution has simple form. Therefore we calculate the multipole matrix from its Fourier transform. An important part of our considerations is simplification of the three dimensional Fourier transformation of general multipole matrix by its rotational symmetry to the one-dimensional Hankel transformation.
We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newtons method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the augmented paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.
200 - Guy Baruch 2007
The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for it s numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newtons method. Our numerical simulations show that Newtons method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.
In this paper we study some classes of second order non-homogeneous nonlinear differential equations allowing a specific representation for nonlinear Greens function. In particular, we show that if the nonlinear term possesses a special multiplicativ ity property, then its Greens function is represented as the product of the Heaviside function and the general solution of the corresponding homogeneous equations subject to non-homogeneous Cauchy conditions. Hierarchies of specific non-linearities admitting this representation are derived. The nonlinear Greens function solution is numerically justified for the sinh-Gordon and Liouville equations. We also list two open problems leading to a more thorough characterizations of non-linearities admitting the obtained representation for the nonlinear Greens function.
The Greens function method which has been originally proposed for linear systems has several extensions to the case of nonlinear equations. A recent extension has been proposed to deal with certain applications in quantum field theory. The general so lution of second order nonlinear differential equations is represented in terms of a so-called short time expansion. The first term of the expansion has been shown to be an efficient approximation of the solution for small values of the state variable. The proceeding terms contribute to the error correction. This paper is devoted to extension of the short time expansion solution to non-linearities depending on the first derivative of the unknown function. Under a proper assumption on the nonlinear term, a general representation for Greens function is derived. It is also shown how the knowledge of nonlinear Greens function can be used to study the spectrum of the nonlinear operator. Particular cases and their numerical analysis support the advantage of the method. The technique we discuss grants to obtain a closed form analytic solution for non-homogeneous non-linear PDEs so far amenable just to numerical solutions. This opens up the possibility of several applications in physics and engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا