ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth of Epitaxial MgB2 Thick Films with Columnar Structures by Using HPCVD

58   0   0.0 ( 0 )
 نشر من قبل Won Nam Kang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial MgB2 thick films were grown on Al2O3 substrates at 600 oC by using the hybrid physical chemical vapor deposition (HPCVD) technique. In order to obtain a high magnesium vapor pressure around the substrates, we used a special susceptor having a susceptor cap and achieved a very high growth rate of 0.17 um/min. Hexgonal-shaped columnar structures were observed by cross-sectional and planar view transmission electron microscope (TEM) images. For the 1.7-um-thick film, the Tc was observed to be 40.5 K with a Jc of 1.5 x 10^6 A/cm^2 at 30 K. The vortex pinning mechanism by intercolumnar boundaries will be discussed.

قيم البحث

اقرأ أيضاً

High-quality epitaxial MgB2 thin films prepared by pulsed laser deposition with Tc = 39 K offer the opportunity to study the anisotropy and robustness of the superconducting state in magnetic fields. We measure the in-plane electrical resistivity of the films in magnetic fields to 60T and estimate the superconducting upper critical field Hc(0) = 24 +- 3 T for field oriented along the c-axis, and Hab(0) = 30 +- 2 T for field in the plane of the film. We find the zero-temperature coherence lengths xi_c(0) = 30 A and xi_ab(0) = 37 A to be shorter than the calculated electronic mean free path l = 100 +- 50 A, which places our films in the clean limit. The observation of such large upper critical fields from clean limit samples, coupled with the relatively small anisotropy, provides strong evidence of the viability of MgB2 as a technologically important superconductor.
The growth mechanisms of MgB2 films obtained by different methods on various substrates are compared via a detailed cross-sectional scanning electron microscopy (SEM) study. The analyzed films include (a) samples obtained by an ex-situ post-anneal at 900 degree of e-beam evaporated boron in the presence of an Mg vapor (exhibiting bulk-like Tc0 about 38.8 K), (b) samples obtained by the same ex-situ 900 degree anneal of pulsed laser deposition (PLD)-grown Mg+B precursors (exhibiting Tc0 ~ 25 K), and (c) films obtained by a low-temperature (600 - 630 degree) in-situ anneal of PLD-grown Mg+B precursors (with Tc0 about 24 K). A significant oxygen contamination was also present in films obtained from a PLD-grown precursors. On the other hand, it is clearly observed that the films obtained by the high-temperature reaction of e-beam evaporated B with Mg vapor are formed by the nucleation of independent MgB2 grains at the film surface, indicating that this approach may not be suitable to obtain smooth and (possibly) epitaxial films.
219 - T. Kawaguchi , H. Uemura , T. Ohno 2009
Epitaxial films of NdFeAsO were grown on GaAs substrates by molecular beam epitaxy (MBE). All elements including oxygen were supplied from solid sources using Knudsen cells. The x-ray diffraction pattern of the film prepared with the optimum growth c ondition showed no indication of impurity phases. Only (00l) peaks were observed, indicating that NdFeAsO was grown with the c-axis perpendicular to the substrate. The window of optimum growth condition was very narrow, but the NdFeAsO phase was grown with a very good reproducibility. Despite the absence of any appreciable secondary phase, the resistivity showed an increase with decreasing temperature.
Structural and superconducting properties of magnesium diboride thin films grown by pulsed laser deposition on zirconium diboride buffer layers were studied. We demonstrate that the ZrB2 layer is compatible with the MgB2 two step deposition process. Synchrotron radiation measurements, in particular anomalous diffraction measurements, allowed to separate MgB2 peaks from ZrB2 ones and revealed that both layers have a single in plane orientation with a sharp interface between them. Moreover, the buffer layer avoids oxygen contamination from the sapphire substrate. The critical temperature of this film is near 37.6 K and the upper critical field measured at Grenoble High Magnetic Field Laboratory up to 20.3 T is comparable with the highest ones reported in literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا