ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Thermal Analysis of a Power Amplifier

417   0   0.0 ( 0 )
 نشر من قبل Francoise Heres-Renzetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.



قيم البحث

اقرأ أيضاً

160 - D. Benoy 2007
This paper presents a study of accuracy issues in thermal modeling of high power LED modules on system level. Both physical as well as numerical accuracy issues are addressed. Incorrect physical assumptions may result in seemingly correct, but errone ous results. It is therefore important to motivate the underlying key physical assumptions of a thermal model. In this paper thermal measurements are used to calibrate a computational fluid dynamics (CFD) model of a high power LED module model at a reference application condition, and to validate it at other application conditions.
132 - J. Das , H. Oprins , H. Ji 2007
Galliumnitride has become a strategic superior material for space, defense and civil applications, primarily for power amplification at RF and mm-wave frequencies. For AlGaN/GaN high electron mobility transistors (HEMT), an outstanding performance co mbined together with low cost and high flexibility can be obtained using a System-in-a-Package (SIP) approach. Since thermal management is extremely important for these high power applications, a hybrid integration of the HEMT onto an AlN carrier substrate is proposed. In this study we investigate the temperature performance for AlGaN/GaN HEMTs integrated onto AlN using flip-chip mounting. Therefore, we use thermal simulations in combination with experimental results using micro-Raman spectroscopy and electrical dc-analysis.
In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca 0.5MnO3, a prototypical manganite exhibiting phase separation. Two regimes for isothermal relaxation were observed according to the temperature range: for T > 100 K, aging/rejuvenation effects are observed, while for T < 100 K an irreversible aging was found. Our results show that thermal cycles act as a tool to unveil the dynamical behavior of the phase separated state in manganites, revealing the close interplay between static and dynamic properties of phase separated manganites.
83 - Y. Osone 2007
We will describe the thermal performance of power semiconductor module, which consists of hetero-junction bipolar transistors (HBTs), for mobile communication systems. We calculate the thermal resistance between the HBT fingers and the bottom surface of a multi-layer printed circuit board (PCB) using a finite element method (FEM). We applied a steady state analysis to evaluate the influence of design parameters on thermal resistance of the module. We found that the thickness of GaAs substrate, the thickness of multi-layer circuit board, the thermal conductivity of bonding material under GaAs substrate, and misalignment of thermal vias between each layer of PCB are the dominant parameter in thermal resistance of the module.
To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr$_7$Ni$_2$Si$_5$, and YMn$_4$Al$_8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا