ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of the Haldane-gap material NENB

229   0   0.0 ( 0 )
 نشر من قبل Erik Cizmar
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of magnetization and high-field ESR studies of the new spin-1 Haldane-chain material [Ni(C2H8N2)2NO2](BF4) (NENB) are reported. A definite signature of the Haldane state in NENB was obtained. From the analysis of the frequency-field dependence of magnetic excitations in NENB, the spin-Hamiltonian parameters were calculated, yielding Delta = 17.4 K, g_parallel = 2.14, D = 7.5 K, and |E| = 0.7 K for the Haldane gap, g factor and the crystal-field anisotropy constants, respectively. The presence of fractional S = 1/2 chain-end states, revealed by ESR and magnetization measurements, is found to be responsible for spin-glass freezing effects. In addition, extra states in the excitation spectrum of NENB have been observed in the vicinity of the Haldane gap, which origin is discussed.

قيم البحث

اقرأ أيضاً

We report results of susceptibility chi and 7Li NMR measurements on LiVSi2O6. The temperature dependence of the magnetic susceptibility chi(T) exhibits a broad maximum, typical for low-dimensional magnetic systems. Quantitatively it is in agreement w ith the expectation for an S=1 spin chain, represented by the structural arrangement of V ions. The NMR results indicate antiferromagnetic ordering below T_N=24 K. The intra- and interchain coupling J and J_p for LiVSi2O6, and also for its sister compounds LiVGe2O6, NaVSi2O6 and NaVGe2O6, are obtained via a modified random phase approximation which takes into account results of quantum Monte Carlo calculations. While J_p is almost constant across the series, J varies by a factor of 5, decreasing with increasing lattice constant along the chain direction. The comparison between experimental and theoretical susceptibility data suggests the presence of an easy-axis magnetic anisotropy, which explains the formation of an energy gap in the magnetic excitation spectrum below T_N, indicated by the variation of the NMR spin-lattice relaxation rate at T << T_N.
We report the anisotropic magnetic properties of Ho2Ge2O7 determined from dc and ac magnetization, specific heat and powder neutron diffraction experiments. The magnetic lanthanide sublattice, seen in our refinement of the tetragonal pyrogermanate cr ystal structure, is a right-handed spiral of edge-sharing and corner-sharing triangles; the local Ho-O coordination indicates that the crystal field is anisotropic. Susceptibility and magnetization data indeed show that the magnetism is highly anisotropic, and the magnetic structure has the Ho moments confined to the plane perpendicular to the structural spiral. The ordered moment of Ho3+, as determined from refinement of the neutron diffraction data, is 9.0 mu_B. Magnetic ordering occurs around 1.6 K. Temperature and field dependent ac susceptibility measurements show that this compound displays spin relaxation phenomena analogous to what is seen in the spin ice pyrochlore system Ho2Ti2O7.
We report a study on the heat transport of an S = 1 Haldane chain compound Ni(C_3H_{10}N_2)_2NO_2ClO_4 at low temperatures and in magnetic fields. The zero-field thermal conductivities show a remarkable anisotropy for the heat current along the spin- chain direction (kappa_b) and the vertical direction (kappa_c), implying a magnetic contribution to the heat transport along the spin-chain direction. The magnetic-field-induced change of the spin spectrum has obviously opposite impacts on kappa_b and kappa_c. In particular, kappa_b(H) and kappa_c(H) curves show peak-like increases and dip-like decreases, respectively, at sim 9 T, which is the critical field that minimizes the spin gap. These results indicate a large magnetic thermal transport in this material.
99 - S. Imai , T. Masuda , T. Matsuoka 2004
Impurity effect is systematically studied in doped Haldane material Pb(Ni$_{1-x}$$M_x$)$_2$V$_2$O$_8$ ($M$ = Mn, Co, Cu, and Mg) by use of DC and AC susceptibility, and heat capacity measurements. The occurrence of three-dimensional ordered state is universally observed for all the impurities and the complete temperature -- concentration phase diagrams are obtained, which are qualitatively similar to that in other spin-gap materials. The unique feature is found in the drastic dependence of the transition temperatures on the species of the impurities. The consideration of effective Hamiltonian based on VBS model makes it clear that the ferromagnetic next-nearest-neighbor interaction and the antiferromagnetic nearest-neighbor interaction between impurity and edge spins play a key role in the unique feature.
190 - Satoshi Ejima , Florian Lange , 2014
We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing large-scale density-matrix renormalization group calc ulations we show that the presence of nearest-neighbor repulsion enriches the ground-state phase diagram of the paradigmatic Bose-Hubbard model by stabilizing a novel gapped insulating state, the so-called Haldane insulator, which, embedded into superfluid, Mott insulator, and density wave phases, is protected by the lattice inversion symmetry. The quantum phase transitions between the different insulating phases were determined from the central charge via the von Neumann entropy. The Haldane phase reveals a characteristic fourfold degeneracy of the entanglement spectrum. We finally demonstrate that the intensity maximum of the dynamical charge structure factor, accessible by Bragg spectroscopy, features the gapped dispersion known from the spin-1 Heisenberg chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا