ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte-Carlo simulation for fragment mass and kinetic energy distributions from neutron induced fission of 235U

203   0   0.0 ( 0 )
 نشر من قبل Justo Rojas
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Montoya




اسأل ChatGPT حول البحث

The mass and kinetic energy distribution of nuclear fragments from thermal neutron induced fission of 235U have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution $sigma_{e}(m)$ around the mass number m = 109, our simulation also produces a second broadening around m = 125, that is in agreement with the experimental data obtained by Belhafaf et al. These results are consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy and the yield as a function of the mass.



قيم البحث

اقرأ أيضاً

The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235U have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.
442 - M. Montoya , J. Rojas , I. Lobato 2008
The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attrib ute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.
61 - W. Loveland. , J. King 2017
We have measured the total kinetic energy release (TKE), its variance and associated fission product distributions for the neutron induced fission of 232Th and 235U for En = 2 - 90 MeV. The neutron energies were determined on an event by event basis by time of flight measurements with the white spectrum neutron beam from LANSCE. The TKE decreases non-linearly with increasing neutron energy for both systems, while the TKE variances are sensitive indicators of nth chance fission. The associated fission product distributions show the decrease in TKE with increasing beam energy that is due to the increasing probability of symmetric fission, which has a lower associated TKE, and the decreasing TKE associated with asymmetric fission, presumably due to the decreasing importance of the A = 132 shell structures.
The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with $A=236 -246$. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energydistributions are found in good agreement with the data.
257 - Xiaojun Sun , Chenggang Yu , 2012
According to the driving potential of a fissile system, we propose a phenomenological fission potential for a description of the pre-neutron emission mass distributions of neutron-induced actinide fission. Based on the nucleus-nucleus potential with the Skyrme energy-density functional, the driving potential of the fissile system is studied considering the deformations of nuclei. The energy dependence of the potential parameters is investigated based on the experimental data for the heights of the peak and valley of the mass distributions. The pre-neutron emission mass distributions for reactions 238U(n, f), 237Np(n, f), 235U(n, f), 232Th(n, f) and 239Pu(n, f) can be reasonably well reproduced. Some predictions for these reactions at unmeasured incident energies are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا