ترغب بنشر مسار تعليمي؟ اضغط هنا

Rare Semileptonic Decays of Heavy Mesons with Flavor SU(3) Symmetry

189   0   0.0 ( 0 )
 نشر من قبل Haibo Li
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we calculate the decay rates of $D^+ to D^0 e^+ u$, $D^+_S to D^0 e^+ u$, $B^0_S to B^+ e^- bar{ u}$, $D^+_S to D^+ e^- e^+$ and $B^0_S to B^0 e^-e^+$ semileptonic decay processes, in which only the light quarks decay, while the heavy flavors remain unchanged. The branching ratios of these decay processes are calculated with the flavor SU(3) symmetry. The uncertainties are estimated by considering the SU(3) breaking effect. We find that the decay rates are very tiny in the framework of the Standard Model. We also estimate the sensitivities of the measurements of these rare decays at the future experiments, such as BES-III, super-$B$ and LHC-$b$.



قيم البحث

اقرأ أيضاً

Assuming the ${bar D}^0, D^-, D^-_s$ and $B^+, B^0, B_s^0$ mesons belong to triplets of SU(3) flavor symmetry, we analyse the form factors in the semileptonic decays of these mesons. Both quark and meson mass differences are taken into account. We fi nd a number of relations, in agreement with the present data as well as with previous analyses, and predict certain ratios of form factors, not yet measured, most notably the D meson decay constant $f_D = 209 pm 39$ MeV.
The semileptonic decays and two-body nonleptonic decays of light baryon octet ($T_8$) and decuplet ($T_{10}$) consisting of light $u,d,s$ quarks are studied with the SU(3) flavor symmetry in this work. We obtain the amplitude relations between differ ent decay modes by the SU(3) irreducible representation approach, and then predict relevant branching ratios by present experimental data within $1 sigma$ error. We find that the predictions for all branching ratios except $mathcal{B}(Xirightarrow Lambda^0pi)$ and $mathcal{B}(Xi^*rightarrow Xipi)$ are in good agreement with present experimental data, that implies the neglected $C_+$ terms or SU(3) breaking effects might contribute at the order of a few percent in $Xirightarrow Lambda^0pi$ and $Xi^*rightarrow Xipi$ weak decays. We predict that $mathcal{B}(Xi^{-}rightarrow Sigma^0mu^-bar{ u}_mu)=(1.13pm0.08)times10^{-6}$, $mathcal{B}(Xi^{-}rightarrowLambda^0mu^-bar{ u}_mu)=(1.58pm0.04)times10^{-4}$, $mathcal{B}(Omega^-rightarrowXi^0mu^-bar{ u}_mu)=(3.7pm1.8)times10^{-3}$, $mathcal{B}(Sigma^-rightarrow Sigma^0e^-bar{ u}_e)=(1.35pm0.28)times10^{-10}$, $mathcal{B}(Xi^-rightarrow Xi^0e^-bar{ u}_e)=(4.2pm2.4)times10^{-10}$. We also study $T_{10}to T_8 P_8$ weak, electromagnetic or strong decays. Some of these decay modes could be observed by the BESIII, LHCb and other experiments in the near future. Due to the very small life times of $Sigma^0$, $Xi^{*0,-}$, $Sigma^{*0,-}$ and $Delta^{0,-}$, the branching ratios of these baryon weak decays are only at the order of $mathcal{O}(10^{-20}-10^{-13}$), which are too small to be reached by current experiments. Furthermore, the longitudinal branching ratios of $T_{8A} to T_{8B} ell^- bar{ u}_ell~(ell=mu,e)$ decays are also given.
We study the three-body anti-triplet ${bf B_c}to {bf B_n}MM$ decays with the $SU(3)$ flavor ($SU(3)_f$) symmetry, where ${bf B_c}$ denotes the charmed baryon anti-triplet of $(Xi_c^0,-Xi_c^+,Lambda_c^+)$, and ${bf B_n}$ and $M(M)$ represent baryon an d meson octets, respectively. By considering only the S-wave $MM$-pair contributions without resonance effects, the decays of ${bf B_c}to {bf B_n}MM$ can be decomposed into irreducible forms with 11 parameters under $SU(3)_f$, which are fitted by the 14 existing data, resulting in a reasonable value of $chi^2/d.o.f=2.8$ for the fit. Consequently, we find that the triangle sum rule of ${cal A}(Lambda_c^+to nbar K^0 pi^+)-{cal A}(Lambda_c^+to pK^- pi^+)-sqrt 2 {cal A}(Lambda_c^+to pbar K^0 pi^0)=0$ given by the isospin symmetry holds under $SU(3)_f$, where ${cal A}$ stands for the decay amplitude. In addition, we predict that ${cal B}(Lambda_c^+to n pi^{+} bar{K}^{0})=(0.9pm 0.8)times 10^{-2}$, which is $3-4$ times smaller than the BESIII observation, indicating the existence of the resonant states. For the to-be-observed ${bf B_c}to {bf B_n}MM$ decays, we compute the branching fractions with the $SU(3)_f$ amplitudes to be compared to the BESIII and LHCb measurements in the future.
The weak and electromagnetic radiative baryon decays of octet $T_{8}$, decuplet $T_{10}$, single charmed anti-triplet $T_{c3}$ and sextet $T_{c6}$, single heavy bottomed anti-triplet $T_{b3}$ and sextet $T_{b6}$ are investigated by using SU(3) flavor symmetry irreducible representation approach. We analyze the contributions from a single quark transition $q_1to q_2gamma$ and $W$ exchange transitions, and find that the amplitudes could be easily related by SU(3) flavor symmetry in the $T_{b3,b6}$ weak radiative decays, $T_{c3,c6}$ weak radiative decays, $T_{10}to T_{8}gamma $ weak decays, $T_{10}to T_{10}gamma $ weak decays and $T_{10}to T_{8}gamma $ electromagnetic decays. Nevertheless, the amplitude relations are a little complex in the $T_{8}to T_{8}gamma$ and $T_{8}to T_{10}gamma$ weak decays due to quark antisymmetry in $T_{8}$ and $W$ exchange contributions. Predictions for branching ratios of $Lambda^{0}_bto ngamma$, $Xi^{-}_bto Xi^-gamma$, $Xi^{-}_bto Sigma^-gamma$, $Xi^{0}_bto Sigma^0gamma$, $Xi^{0}_bto Lambda^0gamma$, $Xi^{0}_bto Xi^0gamma$, $Xi^{*}to Xigamma$, $Sigma^{*0}to Sigma^{0}gamma$, $Delta^0to ngamma$ and $Delta^+to pgamma$ are given. The results in this work can be used to test SU(3) flavor symmetry approach in the radiative baryon decays by the future experiments at BESIII, LHCb and Belle-II.
Analyses of heavy mesons and baryons hadronic charmless decays using the flavor SU(3) symemtry can be formulated in two different forms. One is to construct the SU(3) irreducible representation amplitude (IRA) by decomposing effective Hamiltonian, an d the other is to draw the topological diagrams (TDA). In the flavor SU(3) limit, we study various $B/Dto PP,VP,VV$, $B_cto DP/DV$ decays, and two-body nonleptonic decays of beauty/charm baryons, and demonstrate that when all terms are included these two ways of analyzing the decay amplitudes are completely equivalent. Furthermore we clarify some confusions in drawing topological diagrams using different ways of describing beauty/charm baryons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا