ﻻ يوجد ملخص باللغة العربية
We report the detection of comet 67P/Churyumov-Gerasimenkos dust trail and nucleus in 24 micron Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size >~100 micron. The neck-line is composed of similar sized particles, particles of size but younger in age. Together, our observations and simulations suggest grains 100 micron and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87 +/- 0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (~10^-3) of a trail grain impacting with Rosetta during approach and orbit insertion.
We report on observations of the dust trail of comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2m telescope at 4.7 AU before aphelion, and at 24 micron with the MIPS instrument on board the Spitzer Sp
We report on the results of nearly 10 hours of integration of the dust trail and neckline of comet 67P/Churyumov-Gerasimenko (67P henceforth) using the Wide Field Imager at the ESO/MPG 2.2m telescope in La Silla. The data was obtained in April 2004 w
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volat