ترغب بنشر مسار تعليمي؟ اضغط هنا

S-duality in hyperkaehler Hodge theory

128   0   0.0 ( 0 )
 نشر من قبل Tamas Hausel
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Tamas Hausel




اسأل ChatGPT حول البحث

Here we survey questions and results on the Hodge theory of hyperkaehler quotients, motivated by certain S-duality considerations in string theory. The problems include L^2 harmonic forms, Betti numbers and mixed Hodge structures on the moduli spaces of Yang-Mills instantons on ALE gravitational instantons, magnetic monopoles on R^3 and Higgs bundles on a Riemann surface. Several of these spaces and their hyperkaehler metrics were constructed by Nigel Hitchin and his collaborators.



قيم البحث

اقرأ أيضاً

We work on a projective threefold $X$ which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macr`i-Toda, such as $mathbb P^3$ or the quintic threefold. We prove certain moduli spaces of 2-dimensional torsion sheaves on $X$ are smooth bundles o ver Hilbert schemes of ideal sheaves of curves and points in $X$. When $X$ is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. These latter invariants are predicted to have modular properties which we discuss from the point of view of S-duality and Noether-Lefschetz theory.
We show that normalized quantum K-theoretic vertex functions for cotangent bundles of partial flag varieties are the eigenfunctions of quantum trigonometric Ruijsenaars-Schneider (tRS) Hamiltonians. Using recently observed relations between quantum K nizhnik-Zamolodchikov (qKZ) equations and tRS integrable system we derive a nontrivial identity for vertex functions with relative insertions.
We study the moduli spaces of flat SL(r)- and PGL(r)-connections, or equivalently, Higgs bundles, on an algebraic curve. These spaces are noncompact Calabi-Yau orbifolds; we show that they can be regarded as mirror partners in two different senses. F irst, they satisfy the requirements laid down by Strominger-Yau-Zaslow (SYZ), in a suitably general sense involving a B-field or flat unitary gerbe. To show this, we use their hyperkahler structures and Hitchins integrable systems. Second, their Hodge numbers, again in a suitably general sense, are equal. These spaces provide significant evidence in support of SYZ. Moreover, they throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.
131 - Michael Thaddeus 2000
By normalizing the space of commuting pairs of elements in a reductive Lie group G, and the corresponding space for the Langlands dual group, we construct pairs of hyperkahler orbifolds which satisfy the conditions to be mirror partners in the sense of Strominger-Yau-Zaslow. The same holds true for commuting quadruples in a compact Lie group. The Hodge numbers of the mirror partners, or more precisely their orbifold E-polynomials, are shown to agree, as predicted by mirror symmetry. These polynomials are explicitly calculated when G is a quotient of SL(n).
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا