ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the Multiple Outflows in the Egg Nebula with Keck II Laser Guide Star Adaptive Optics

542   0   0.0 ( 0 )
 نشر من قبل David Le Mignant
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Egg Nebula has been regarded as the archetype of bipolar proto-planetary nebulae, yet we lack a coherent model that can explain the morphology and kinematics of the nebular and dusty components observed at high-spatial and spectral resolution. Here, we report on two sets of observations obtained with the Keck Adaptive Optics Laser Guide Star: H to M-band NIRC2 imaging, and narrow bandpath K-band OSIRIS 3-D imaging-spectroscopy (through the H2 2.121micron emission line). While the central star or engine remains un-detected at all bands, we clearly resolve the dusty components in the central region and confirm that peak A is not a companion star. The spatially-resolved spectral analysis provide kinematic information of the H_2 emission regions in the eastern and central parts of the nebula and show projected velocities for the H_2 emission higher than 100 km/s. We discuss these observations against a possible formation scenario for the nebular components.



قيم البحث

اقرأ أيضاً

194 - J. Melbourne 2008
Spitzer MIPS images in the Bootes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust obscured galaxy (DOG) at z~2. The DOGs are defined by very red optical to mid-IR (observed-frame) colors, R - [24 um] > 14 mag, i.e. f_ v (24 um) / f_v (R) > 1000. They are Ultra-Luminous Infrared Galaxies with L_8-1000 um > 10^12 -10^14 L_sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck Laser Guide Star Adaptive Optics (LGSAO) system, obtaining ~0.06 resolution in the K-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The non-parametric measures of their concentration and asymmetry, show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1 (< 1 kpc at z=2), making it unlikely that ongoing major mergers (mass ratios of 1/3 and greater) are triggering the high IR luminosities. By contrast, high resolution images of z~2 SCUBA sources tend to show multiple components and a higher degree of asymmetry. We compare near-IR morphologies of the DOGs with a set of z=1 luminous infrared galaxies (LIRGs; L_IR ~ 10^11 L_sun) imaged with Keck LGSAO by the Center for Adaptive Optics Treasury Survey. The DOGs in our sample have significantly smaller effective radii, ~1/4 the size of the z=1 LIRGs, and tend towards higher concentrations. The small sizes and high concentrations may help explain the globally obscured rest-frame blue-to-UV emission of the DOGs.
133 - Stuart D. Ryder 2014
Using the latest generation of adaptive optics imaging systems together with laser guide stars on 8m-class telescopes, we are finally revealing the previously-hidden population of supernovae in starburst galaxies. Finding these supernovae and measuri ng the amount of absorption due to dust is crucial to being able to accurately trace the star formation history of our Universe. Our images of the host galaxies are amongst the sharpest ever obtained from the ground, and reveal much about how and why these galaxies are forming massive stars (that become supernovae) at such a prodigious rate.
190 - E. Steinbring 2005
Most current astronomical adaptive optics (AO) systems rely on the availability of a bright star to measure the distortion of the incoming wavefront. Replacing the guide star with an artificial laser beacon alleviates this dependency on bright stars and therefore increases sky coverage, but it does not eliminate another serious problem for AO observations. This is the issue of PSF variation with time and field position near the guide star. In fact, because a natural guide star is still necessary for correction of the low-order phase error, characterization of laser guide star (LGS) AO PSF spatial variation is more complicated than for a natural guide star alone. We discuss six methods for characterizing LGS AO PSF variation that can potentially improve the determination of the PSF away from the laser spot, that is, off-axis. Calibration images of dense star fields are used to determine the change in PSF variation with field position. This is augmented by AO system telemetry and simple computer simulations to determine a more accurate off-axis PSF. We report on tests of the methods using the laser AO system on the Lick Observatory Shane Telescope. [Abstract truncated.]
Recent studies of the tight scaling relations between the masses of supermassive black holes and their host galaxies have suggested that in the past black holes constituted a larger fraction of their host galaxies mass. However, these arguments are l imited by selection effects and difficulties in determining robust host galaxy masses at high redshifts. Here we report the first results of a new, complementary diagnostic route: we directly determine a dynamical host galaxy mass for the z=1.3 luminous quasar J090543.56+043347.3 through high-spatial-resolution (0.47, 4kpc FWHM) observations of the host galaxy gas kinematics over 30x40 kpc using ESO/VLT/SINFONI with LGS/AO. Combining our result of M_dyn = 2.05+1.68_0.74 x 10^11 M_sun (within a radius 5.25 +- 1.05 kpc) with M_BH,MgII = 9.02 pm 1.43 x 10^8 M_sun, M_BH,Halpha = 2.83 +1.93-1.13 x 10^8 M_sun, we find that the ratio of black hole mass to host galaxy dynamical mass for J090543.56+043347.3 matches the present-day relation for M_BH vs. M_Bulge,Dyn, well within the IR scatter, deviating at most a factor of two from the mean. J090543.56+043347.3 displays clear signs of an ongoing tidal interaction and of spatially extended star formation at a rate of 50-100 M_sun/yr, above the cosmic average for a galaxy of this mass and redshift. We argue that its subsequent evolution may move J090543.56+043347.3 even closer to the z=0 relation for M_BH vs. M_Bulge,Dyn. Our results support the picture where any substantive evolution in these relations must occur prior to z~1.3. Having demonstrated the power of this modelling approach we are currently analyzing similar data on seven further objects to better constrain such evolution.
We describe results from the first astronomical adaptive optics system to use multiple laser guide stars, located at the 6.5-m MMT telescope in Arizona. Its initial operational mode, ground-layer adaptive optics (GLAO), provides uniform stellar wavef ront correction within the 2 arc minute diameter laser beacon constellation, reducing the stellar image widths by as much as 53%, from 0.70 to 0.33 arc seconds at lambda = 2.14 microns. GLAO is achieved by applying a correction to the telescopes adaptive secondary mirror that is an average of wavefront measurements from five laser beacons supplemented with image motion from a faint stellar source. Optimization of the adaptive optics system in subsequent commissioning runs will further improve correction performance where it is predicted to deliver 0.1 to 0.2 arc second resolution in the near-infrared during a majority of seeing conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا