ﻻ يوجد ملخص باللغة العربية
The effects of the lightest neutrino mass in ``flavoured leptogenesis are investigated in the case when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in the neutrino mixing matrix U. The type I see-saw scenario with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The ``orthogonal parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. Results for light neutrino mass spectrum with normal and inverted ordering (hierarchy) are obtained. It is shown, in particular, that if the matrix R is real and CP-conserving and the lightest neutrino mass m_3 in the case of inverted hierarchical spectrum lies the interval 5 times 10^{-4} eV < m_3 < 7 times 10^{-3} eV, the predicted baryon asymmetry can be larger by a factor of sim 100 than the asymmetry corresponding to negligible m_3 cong 0. As consequence, we can have successful thermal leptogenesis for 5 times 10^{-6} eV < m_3 < 5 times 10^{-2} eV even if R is real and the only source of CP-violation in leptogenesis is the Majorana and/or Dirac phase(s) in U.
Effects of the lightest neutrino mass in flavoured leptogenesis when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in the neutrino mixing matrix $U$ are di
Neutrino Physics is a mature branch of science with all the three neutrino mixing angles and two mass squared differences determined with high precision. Inspite of several experimental verifications of neutrino oscillations and precise measurements
We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the
We have studied the scenario of baryogenesis via leptogenesis in an $A_4$ flavor symmetric framework considering type I seesaw as the origin of neutrino mass. Because of the presence of the fifth generation right handed neutrino the model naturally g
In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross sec