ﻻ يوجد ملخص باللغة العربية
Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.
The motion of an artificial micro-scale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times, it has a substantial component of dire
We report on calculations of the reduced sedimentation velocity $U/U_{0}$ in homogenous suspensions of strongly and weakly charged colloidal spheres as a function of particle volume fraction $phi$. For dilute suspensions of strongly charged spheres a
We establish an explicit data-driven criterion for identifying the solid-liquid transition of two-dimensional self-propelled colloidal particles in the far from equilibrium parameter regime, where the transition points predicted by different conventi
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in suspensions of charge-stabilized colloidal spheres. In simulation and theory, the spheres interact by a hard-core plus screened Coulomb pair potenti
We study the effect of shear on the aging dynamics of a colloidal suspension of synthetic clay particles. We find that a shear of amplitude $gamma$ reduces the relaxation time measured just after the cessation of shear by a factor $exp(-gamma/gamma_c