ﻻ يوجد ملخص باللغة العربية
We investigate the nature of resonant tunneling in Quantum Field Theory. Following the pioneering work of Banks, Bender and Wu, we describe quantum field theory in terms of infinite dimensional quantum mechanics and utilize the ``Most probable escape path (MPEP) as the class of paths which dominate the path integral in the classically forbidden region. Considering a 1+1 dimensional field theory example we show that there are five conditions that any associated bound state in the classically allowed region must satisfy if resonant tunnelling is to occur, and we then proceed to show that it is impossible to satisfy all five conditions simultaneously.
The resonant tunneling phenomenon is well understood in quantum mechanics. We argue why a similar phenomenon must be present in quantum field theory. We then use the functional Schrodinger method to show how resonant tunneling through multiple barrie
A free massive scalar field in inhomogeneous random media is investigated. The coefficients of the Klein-Gordon equation are taken to be random functions of the spatial coordinates. The case of an annealed-like disordered medium, modeled by centered
We discuss the renormalisation of the initial value problem in quantum field theory using the two-particle irreducible (2PI) effective action formalism. The nonequilibrium dynamics is renormalised by counterterms determined in equilibrium. We emphasi
We study a free scalar field $phi$ in a fixed curved background spacetime subject to a higher derivative field equation of the form $F(Box)phi =0$, where $F$ is a polynomial of the form $F(Box)= prod_i (Box-m_i^2)$ and all masses $m_i$ are distinct a
We study the phase structure of a 4D complex scalar field theory with a potential V(Phi) = | Lambda^3 / Phi - Lambda Phi |^2 at zero and at finite temperature. The model is analyzed by mean field and Monte Carlo methods. At zero temperature the theor