ﻻ يوجد ملخص باللغة العربية
Although very successful in explaining the observed conspiracy between the baryonic distribution and the gravitational field in spiral galaxies without resorting to dark matter (DM), the modified Newtonian dynamics (MOND) paradigm still requires DM in X-ray bright systems. Here, to get a handle on the distribution and importance of this DM, and thus on its possible form, we deconstruct the mass profiles of 26 X-ray emitting systems in MOND, with temperatures ranging from 0.5 to 9 keV. Initially we compute the MOND dynamical mass as a function of radius, then subtract the known gas mass along with a component of galaxies which includes the cD galaxy with $M/L_K=1$. Next we test the compatibility of the required DM with ordinary massive neutrinos at the experimental limit of detection ($m_{ u}=2$ eV), with density given by the Tremaine-Gunn limit. Even by considering that the neutrino density stays constant and maximal within the central 100 or 150 kpc (which is the absolute upper limit of a possible neutrino contribution there), we show that these neutrinos can never account for the required DM within this region. The natural corollary of this finding is that, whereas clusters (T $ga$ 3 keV) might have most of their mass accounted for if ordinary neutrinos have a 2 eV mass, groups (T $lsim$ 2 keV) cannot be explained by a 2 eV neutrino contribution. This means that, for instance, cluster baryonic dark matter (CBDM, Milgrom 2007) or even sterile neutrinos would present a more satisfactory solution to the problem of missing mass in MOND X-ray emitting systems.
We present a parametric analysis of the intracluster medium and gravitating mass distribution of a statistical sample of 20 galaxy clusters using the phenomenological cluster model of Ascasibar and Diego. We describe an effective scheme for the estim
We use recent proper motion measurements of the tangential velocity of M31, along with its radial velocity and distance, to derive the likelihood of the sum of halo masses of the Milky Way and M31. This is done using a sample halo pairs in the Bolsho
The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the bar
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
We report on the X-ray observation of a strong lensing selected group, SL2S J08544-0121, with a total mass of $2.4 pm 0.6 times 10^{14}$ $rm{M_odot}$ which revealed a separation of $124pm20$ kpc between the X-ray emitting collisional gas and the coll