ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of NeVIII lines in H-deficient (pre-) white dwarfs: a new tool to constrain the temperature of the hottest stars

45   0   0.0 ( 0 )
 نشر من قبل K. Werner
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the first time, we have identified NeVIII absorption lines in far-UV spectra of the hottest known (Teff>150,000 K) hydrogen-deficient (pre-) white dwarfs of spectral type PG1159. They are of photospheric origin and can be matched by synthetic non-LTE line profiles. We also show that a number of UV and optical emission lines in these stars can be explained as being photospheric NeVIII features and not, as hitherto suspected, as ultrahigh ionised OVIII lines created along shock-zones in the stellar wind. Consequently, we argue that the long-standing identification of the same emission lines in hot [WR]-type central stars as being due to ultrahigh-ionised species (OVII-VIII, CV-VI) must be revised. These lines can be entirely attributed to thermally excited species (NeVII-VIII, NV, OVI). Photospheric NeVIII lines are also identified in the hottest known He-rich white dwarf KPD0005+5106 some of which were also attributed to OVIII previously. This is a surprise because it must be concluded that KPD0005+5106 is much hotter (Teff=200,000 K) than hitherto assumed (Teff=120,000 K). This is confirmed by a re-assessment of the HeII line spectrum. We speculate that the temperature is high enough to explain the mysterious, hard X-ray emission (1 keV) as being of photospheric origin.

قيم البحث

اقرأ أيضاً

In this paper, we present the observations of two new GW Vir stars from the extended textit{TESS} mission in both 120,s short-cadence and 20,s ultra-short-cadence mode of two pre-white dwarf stars showing hydrogen deficiency. We performed an asterose ismological analysis of these stars on the basis of PG~1159 evolutionary models that take into account the complete evolution of the progenitor stars. We searched for patterns of uniform period spacings in order to constrain the stellar mass of the stars, and employed the individual observed periods to search for a representative seismological model. The analysis of the {it TESS} light curves of TIC,333432673 and TIC,095332541 reveals the presence of several oscillations with periods ranging from 350 to 500~s associated to typical gravity ($g$)-modes. From follow-up ground-based spectroscopy, we find that both stars have similar effective temperature ($T_mathrm{eff} = 120,000 pm 10,000$,K) and surface gravity ($log g = 7.5 pm 0.5$) but a different He/C composition. On the basis of PG~1159 evolutionary tracks, we derived a spectroscopic mass of $M_{star}$ = $0.58^{+0.16}_{-0.08},M_{odot}$ for both stars. Our asteroseismological analysis of TIC,333432673 allowed us to find a constant period spacing compatible with a stellar mass $M_{star}sim 0.60-0.61,M_{odot}$, and an asteroseismological model for this star with a stellar mass $M_{star}$ = $0.589pm 0.020$ $M_{odot}$, and a seismological distance of $d= 459^{+188}_{-156}$ pc. For this star, we find an excellent agreement between the different methods to infer the stellar mass, and also between the seismological distance and that measured with {it Gaia} ($d_{rm Gaia}= 389^{+5.6}_{-5.2}$ pc). For TIC,095332541, we have found a possible period spacing that suggests a stellar mass of $M_{star}sim 0.55-0.57,M_{odot}$.
Context: The Sloan Digital Sky Survey Data Release 4 has provided spectra of several new PG 1159 stars and DO white dwarfs. This increase in known hot H-deficient compact objects significantly improves the statistics and helps to investigate late sta ges of stellar evolution. Aims: From the optical SDSS spectra, effective temperatures and surface gravities are derived in order to place the observed objects in an evolutionary context. Especially the connection between PG 1159 stars and DO white dwarfs shall be investigated. Method: Using our non-LTE model atmospheres and applying chi^2-fitting techniques, we determine stellar parameters and their errors. We derive total stellar masses for the DO white dwarfs using model evolutionary tracks. Results: We confirm three PG 1159 stars, with one showing ultra-high excitation ion features, and one sdO which we originally classified as a PG 1159 star. Additionally, we re-analysed the known PG 1159 star, PG 1424+535, with our new models. Furthermore, we present the first spectral analyses of thirteen DO white dwarfs, three of which show M-star features in their spectra, while two display ultra-high excitation ion features.
The white dwarf luminosity function, which provides information about their cooling, has been measured with high precision in the past few years. Simulations that include well known Standard Model physics give a good fit to the data. This leaves litt le room for new physics and makes these astrophysical objects a good laboratory for testing models beyond the Standard Model. It has already been suggested that white dwarfs might provide some evidence for the existence of axions. In this work we study the constraints that the white dwarf luminosity function puts on physics beyond the Standard Model involving new light particles (fermions or bosons) that can be pair-produced in a white dwarf and then escape to contribute to its cooling. We show, in particular, that we can severely constrain the parameter space of models with dark forces and light hidden sectors (lighter than a few tens of keV). The bounds we find are often more competitive than those from current lab searches and those expected from most future searches.
We present the results of the asteroseismic analysis of the hydrogen-deficient white dwarf PG 0112+104 from the $Kepler$-2 field. Our seismic procedure using the forward method based on physically sound, static models, includes the new core parameter ization leading us to reproduce the periods of this star near the precision of the observations. This new fit outperforms current state-of-the-art standards by order of magnitudes. We precisely establish the internal structure and unravel the inner C/O stratification of its core. This opens up interesting perspectives on better constraining key processes in stellar physics such as nuclear burning, convection, and mixing, that shape this stratification over time.
Two of the possibilities for the formation of low-mass ($M_{star}lesssim 0.5,M_{odot}$) hydrogen-deficient white dwarfs are the occurrence of a very-late thermal pulse after the asymptotic giant-branch phase or a late helium-flash onset in an almost stripped core of a red giant star. We aim to asses the potential of asteroseismology to distinguish between the hot flasher and the very-late thermal pulse scenarios for the formation of low-mass hydrogen-deficient white dwarfs. We compute the evolution of low-mass hydrogen-deficient white dwarfs from the zero-age main sequence in the context of the two evolutionary scenarios. We explore the pulsation properties of the resulting models for effective temperatures characterizing the instability strip of pulsating helium-rich white dwarfs. We find that there are significant differences in the periods and in the period spacings associated with low radial-order ($klesssim 10$) gravity modes for white-dwarf models evolving within the instability strip of the hydrogen-deficient white dwarfs. The measurement of the period spacings for pulsation modes with periods shorter than $sim500,$s may be used to distinguish between the two scenarios. Moreover, period-to-period asteroseismic fits of low-mass pulsating hydrogen-deficient white dwarfs can help to determine their evolutionary history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا