ترغب بنشر مسار تعليمي؟ اضغط هنا

First robotic monitoring of a lensed quasar: intrinsic variability of SBS 0909+532

239   0   0.0 ( 0 )
 نشر من قبل Luis Julian Goicoechea
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. J. Goicoechea




اسأل ChatGPT حول البحث

To go into the details about the variability of the double quasar SBS 0909+532, we designed a monitoring programme with the 2 m Liverpool Robotic Telescope in the r Sloan filter, spanning 1.5 years from 2005 January to 2006 June. The r-band light curves of the A and B components, several cross-correlation techniques and a large number of simulations (synthetic light curves) lead to a robust delay of 49 +/- 6 days (1-sigma interval) that agrees with our previous results (the B component is leading). Once the time delay and the magnitude offset are known, the magnitude- and time-shifted light curve of image A is subtracted from the light curve of image B. This difference light curve of SBS 0909+532 is consistent with zero, so any possible extrinsic signal must be very weak, i.e., the observed variability in A and B is basically due to observational noise and intrinsic signal. We then make the combined light curve and analyse its statistical properties (structure functions). The structure function of the intrinsic luminosity is fitted to predictions of simple models of two physical scenarios: accretion disc instabilities and nuclear starbursts. Although no simple model is able to accurately reproduce the observed trend, symmetric triangular flares in an accretion disc seems to be the best option to account for it.



قيم البحث

اقرأ أيضاً

228 - A. Ullan 2006
The time delays between the components of a lensed quasar are basic tools to analyze the expansion of the Universe and the structure of the main lens galaxy halo. In this paper, we focus on the variability and time delay of the double system SBS 0909 +532A,B as well as the time behaviour of the field stars. We use VR optical observations of SBS 0909+532A,B and the field stars in 2003. The frames were taken at Calar Alto, Maidanak and Wise observatories, and the VR light curves of the field stars and quasar components are derived from aperture and point-spread function fitting methods. We measure the R-band time delay of the system from the chi-square and dispersion techniques and 1000 synthetic light curves based on the observed records. One nearby field star (SBS 0909+532c) is found to be variable, and the other two nearby field stars are non-variable sources. With respect to the quasar components, the R-band records seem more reliable and are more densely populated than the V-band ones. The observed R-band fluctuations permit a pre-conditioned measurement of the time delay. From the chi-square minimization, if we assume that the quasar emission is observed first in B and afterwards in A (in agreement with basic observations of the system and the corresponding predictions), we obtain a delay of - 45 (+ 1)/(- 11) days (95% confidence interval). The dispersion technique leads to a similar delay range. A by-product of the analysis is the determination of a totally corrected flux ratio in the R band (corrected by the time delay and the contamination due to the galaxy light). Our 95% measurement of this ratio (0.575 +/- 0.014 mag) is in excellent agreement with previous results from contaminated fluxes at the same time of observation.
We present three complete seasons and two half-seasons of SDSS r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Ro botic Telescope. Using Monte Carlo simulations to simultaneously measure the systems time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the systems time delay to Delta t_{AB} = 50^{+2}_{-4} days, where the stated uncertainties represent the bounds of the formal 1sigma confidence interval. There may be a conflict between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r- and g-bands to constrain the size of the quasars continuum source at these wavelengths, obtaining log[(r_{s,r}/cm) [cos{i}/0.5]^{1/2}] = 15.3 pm 0.3 and log[(r_{s,g}/cm) [cos{i}/0.5]^{1/2}] = 14.8 pm 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.
106 - L.M. Lubin 1999
We present new results from a continuing Keck program to study gravitational lens systems. We have obtained redshifts for three lens systems, SBS 0909+532, HST 1411+5211, and CLASS B2319+051. For all of these systems, either the source or lens redshi ft (or both) has been previously unidentified. We find (z_l, z_s) = (0.830, 1.377) for SBS 0909+532; (z_l, z_s) = (0.465, 2.811) for HST 1411+5211, although the source redshift is still tentative; and (z_l1, z_l2) = (0.624, 0.588) for the two lensing galaxies in CLASS B2319+051. The background radio source in B2319+051 has not been detected optically; its redshift is, therefore, still unknown. We find that the spectral features of the central lensing galaxy in all three systems are typical of an early-type galaxy. The observed image splittings in SBS 0909+532 and HST 1411+5211 imply that the masses within the Einstein ring radii of the lensing galaxies are 1.4 x 10^{11} and 2.0 x 10^{11} h^{-1} M_sun, respectively. The resulting B band mass-to-light ratio for HST 1411+5211 is 41.3 +/- 1.2 h (M/L)_sun, a factor of 5 times higher than the average early-type lensing galaxy. This large mass-to-light is almost certainly the result of the additional mass contribution from the cluster CL 3C295 at z = 0.46. For the lensing galaxy in SBS 0909+532, we measure (M/L)_B = 4^{+11}_{-3} h (M/L)_sun where the large errors are the result of significant uncertainty in the galaxy luminosity. While we cannot measure directly the mass-to-light ratio of the lensing galaxy in B2319+051, we estimate that (M/L)_B is between 3-7 h (M/L)_sun.
We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 years (1-3.5 years in the quasar rest-frame). We present the observational data and th e conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems nor in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable broad absorption lines. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density $sim$ 10$^3$-10$^5$ cm$^{-3}$ and upper limits on the distance of the absorbers from the central engine of order a few kpc. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.
391 - A. Eigenbrod 2008
We present the results of the first long-term (2.2 years) spectroscopic monitoring of a gravitationally lensed quasar, namely the Einstein Cross Q2237+0305. The goal of this paper is to present the observational facts to be compared in follow-up pape rs with theoretical models to constrain the inner structure of the source quasar. We spatially deconvolve deep VLT/FORS1 spectra to accurately separate the spectrum of the lensing galaxy from the spectra of the quasar images. Accurate cross-calibration of the 58 observations at 31-epoch from October 2004 to December 2006 is carried out with non-variable foreground stars observed simultaneously with the quasar. The quasar spectra are further decomposed into a continuum component and several broad emission lines to infer the variations of these spectral components. We find prominent microlensing events in the quasar images A and B, while images C and D are almost quiescent on a timescale of a few months. The strongest variations are observed in the continuum of image A. Their amplitude is larger in the blue (0.7 mag) than in the red (0.5 mag), consistent with microlensing of an accretion disk. Variations in the intensity and profile of the broad emission lines are also reported, most prominently in the wings of the CIII] and center of the CIV emission lines. During a strong microlensing episode observed in June 2006 in quasar image A, the broad component of the CIII] is more highly magnified than the narrow component. In addition, the emission lines with higher ionization potentials are more magnified than the lines with lower ionization potentials, consistent with the results obtained with reverberation mapping. Finally, we find that the V-band differential extinction by the lens, between the quasar images, is in the range 0.1-0.3 mag.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا