ﻻ يوجد ملخص باللغة العربية
We consider invasion percolation on the square lattice. It has been proved by van den Berg, Peres, Sidoravicius and Vares, that the probability that the radius of a so-called pond is larger than n, differs at most a factor of order log n from the probability that in critical Bernoulli percolation the radius of an open cluster is larger than n. We show that these two probabilities are, in fact, of the same order. Moreover, we prove an analogous result for the volume of a pond.
In invasion percolation, the edges of successively maximal weight (the outlets) divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree, the ponds are shown to grow exponentially, with law of large numbers, central
We study the boundary effects in invasion percolation with and without trapping. We find that the presence of boundaries introduces a new set of surface critical exponents, as in the case of standard percolation. Numerical simulations show a fractal
In this paper we study the properties of the Barabasi model of queueing under the hypothesis that the number of tasks is steadily growing in time. We map this model exactly onto an Invasion Percolation dynamics on a Cayley tree. This allows to recove
The main purpose of this work is to simulate two-phase flow in the form of immiscible displacement through anisotropic, three-dimensional (3D) discrete fracture networks (DFN). The considered DFNs are artificially generated, based on a general distri
In J. Shao et al., PRL 103, 108701 (2009) the authors claim that a model with majority rule coarsening exhibits in d=2 a percolation transition in the universality class of invasion percolation with trapping. In the present comment we give compelling