ترغب بنشر مسار تعليمي؟ اضغط هنا

The Influence of Metallicity on Star Formation in Protogalaxies

44   0   0.0 ( 0 )
 نشر من قبل Anne-Katharina Jappsen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.

قيم البحث

اقرأ أيضاً

215 - Pavel Kroupa 2008
Stars form in embedded star clusters which play a key role in determining the properties of a galaxys stellar population. Physical mechanisms discussed in this paper are runaway stars shot out from young clusters, binary-star disruption in clusters, gas blow-out from clusters and the origin of thick galactic disks. I emphasise that the SNIa rate per low-mass star depends on the star-clusters formed in a galaxy and I discuss the IGIMF theory. Based on the IGIMF theory, the re-calibrated Halpha-luminosity--SFR relation implies dwarf irregular galaxies to have the same gas-depletion time-scale as major disk galaxies, suggesting a major change in our understanding of dwarf-galaxy evolution. The IGIMF-theory also naturally leads to the observed radial Halpha cutoff in disk galaxies without a radial star-formation cutoff. It emerges that the thorough understanding of the physics and distribution of star clusters may be leading to a major paradigm shift in our understanding of galaxy evolution.
We have used a sample of 15749 galaxies taken from the Las Campanas Redshift Survey to investigate the effects of environment on the rate of star formation (SFR) in galaxies. The size and homogeneity of this data set allows us to sample, for the firs t time, the entire range of galactic environment, from the voids to the clusters, in a uniform manner, thus, we could decouple the local galaxy density from the membership in associations. This decoupling is very crucial for constraining the physical processes responsible for the environmental dependencies of SFR. On the other hand, the use of an automatically-measured concentration index (C), rather than Hubble type, allows us to cleanly separate the morphological component from the SFR vs. environment relationship. We find that cluster galaxies exhibit lower SFR for the same C than field galaxies, while a further division of clusters by `richness reveals a new possible excitation of `starbursts in poor clusters. Meanwhile, a more general environmental investigation reveals that the SFR of a given C shows a continuous correlation with the local density. Interestingly, this trend is also observed both inside and outside of clusters, implying that physical processes responsible for this correlation might not be intrinsic to the cluster environment. On the other hand, galaxies with differing levels of SFR appear to respond differently to the local density. Low levels of SFR are more sensitive to environment inside than outside of clusters. In contrast, high levels of SFR, identified as ``starbursts, are as sensitive to local density in the field as in clusters. We conclude that at least two separate processes are responsible for the environmental sensitivity of the SFR.
39 - John H. Wise 2008
Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial condi tions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of ~10^8 M_sun galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10^5 solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.
The first stars form in dark matter halos of masses ~10^6 M_sun as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from their shallow potential well of their surrounding dark matt er halos. We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions. We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H_2 cooling create a complex, multi-phase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10^4 K to approximately 10^{-3} of solar metallicity. We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.
We investigate the use of the rest-frame 24microns luminosity as an indicator of the star formation rate (SFR) in galaxies with different metallicities by comparing it to the (extinction corrected) Halpha luminosity. We carry out this analysis in 2 s teps: First, we compare the emission from HII regions in different galaxies with metallicities between 12+log(O/H) = 8.1 and 8.9. We find that the 24microns and the extinction corrected Halpha luminosities from individual HII regions follow the same correlation for all galaxies, independent of their metallicity. Second, the role of metallicity is explored further for the integrated luminosity in a sample of galaxies with metallicities in the range of 12+log(O/H) = 7.2 - 9.1. For this sample we compare the 24microns and Halpha luminosities integrated over the entire galaxies and find a lack of the 24microns emission for a given Halpha luminosity for low metallicity objects, likely reflecting a low dust content. These results suggest that the 24microns luminosity is a good metallicity independent tracer for the SFR in individual HII regions. On the other hand, metallicity has to be taken into account when using the 24microns luminosity as a tracer for the SFR of entire galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا