ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard Discs on the Hyperbolic Plane

89   0   0.0 ( 0 )
 نشر من قبل Randall D. Kamien
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine a simple hard disc fluid with no long range interactions on the two dimensional space of constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which global crystalline order is frustrated, allowing us to construct a tractable model of disordered monodisperse hard discs. We extend free area theory and the virial expansion to this regime, deriving the equation of state for the system, and compare its predictions with simulation near an isostatic packing in the curved space.



قيم البحث

اقرأ أيضاً

227 - M. Lopez de Haro , A. Santos , 2008
A simple equation of state for hard disks on the hyperbolic plane is proposed. It yields the exact second virial coefficient and contains a pole at the highest possible packing. A comparison with another very recent theoretical proposal and simulation data is presented.
We examine the question of the criteria of the relaxation to the equilibrium in the hard disk dynamics. In the Event-Chain Monte Carlo, we check the displacement distributions which follows to the exponential law.
167 - M. Lopez de Haro , S. B. Yuste , 2007
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten t formulation, thus improving and extending the known analytical results of the Percus-Yevick theory. Approximate expressions for the contact values of the radial distribution functions and the corresponding analytical equations of state are also discussed. Extensions of this methodology to related systems, such as sticky hard spheres and square-well fluids, as well as its use in connection with the perturbation theory of fluids are briefly addressed.
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed f or this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation.
163 - Jared Callaham , Jon Machta 2017
Population annealing is a sequential Monte Carlo scheme well-suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a p arallel version of simulated annealing with an extra resampling step that ensures that a population of replicas of the system represents the equilibrium ensemble at every packing fraction in an annealing schedule. The algorithm and its equilibration properties are described and results are presented for a glass-forming fluid composed of a 50/50 mixture of hard spheres with diameter ratio of 1.4:1. For this system, we obtain precise results for the equation of state in the glassy regime up to packing fractions $varphi approx 0.60$ and study deviations from the BMCSL equation of state. For higher packing fractions, the algorithm falls out of equilibrium and a free volume fit predicts jamming at packing fraction $varphi approx 0.667$. We conclude that population annealing is an effective tool for studying equilibrium glassy fluids and the jamming transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا