ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuation of solutions of coupled dynamical systems

224   0   0.0 ( 0 )
 نشر من قبل Tianping Chen
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the synchronization of coupled dynamical systems has been widely studied. Synchronization is referred to as a process wherein two (or many) dynamical systems are adjusted to a common behavior as time goes to infinity, due to coupling or forcing. Therefore, before discussing synchronization, a basic problem on continuation of the solution must be solved: For given initial conditions, can the solution of coupled dynamical systems be extended to the infinite interval $[0,+infty)$? In this paper, we propose a general model of coupled dynamical systems, which includes previously studied systems as special cases, and prove that under the assumption of QUAD, the solution of the general model exists on $[0,+infty)$.



قيم البحث

اقرأ أيضاً

This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob lems described by this kind of equations, such us compartmental systems and neural networks among many others. Precisely, more general admissible initial conditions are included in the study to show that the solutions are asymptotically of the same type as the coefficients of the neutral and non-neutral part.
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on t he lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localised periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
We study stability of so-called synchronous slowly oscillating periodic solutions (SOPSs) for a system of identical delay differential equations (DDEs) with linear decay and nonlinear delayed negative feedback that are coupled through their nonlinear term. Under a row sum condition on the coupling matrix, existence of a unique SOPS for the corresponding scalar DDE implies existence of a unique synchronous SOPS for the coupled DDEs. However, stability of the SOPS for the scalar DDE does not generally imply stability of the synchronous SOPS for the coupled DDEs. We obtain an explicit formula, depending only on the spectrum of the coupling matrix, the strength of the linear decay and the values of the nonlinear negative feedback function near plus/minus infinity, that determines the stability of the synchronous SOPS in the asymptotic regime where the nonlinear term is heavily weighted. We also treat the special cases of so-called weakly coupled systems, near uniformly coupled systems, and doubly nonnegative coupled systems, in the aforementioned asymptotic regime. Our approach is to estimate the characteristic (Floquet) multipliers for the synchronous SOPS. We first reduce the analysis of the multidimensional variational equation to the analysis of a family of scalar variational-type equations, and then establish limits for an associated family of monodromy-type operators. We illustrate our results with examples of systems of DDEs with mean-field coupling and systems of DDEs arranged in a ring.
252 - Bixiang Wang 2014
In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynami cal systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.
Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا