ﻻ يوجد ملخص باللغة العربية
Recently, the synchronization of coupled dynamical systems has been widely studied. Synchronization is referred to as a process wherein two (or many) dynamical systems are adjusted to a common behavior as time goes to infinity, due to coupling or forcing. Therefore, before discussing synchronization, a basic problem on continuation of the solution must be solved: For given initial conditions, can the solution of coupled dynamical systems be extended to the infinite interval $[0,+infty)$? In this paper, we propose a general model of coupled dynamical systems, which includes previously studied systems as special cases, and prove that under the assumption of QUAD, the solution of the general model exists on $[0,+infty)$.
This paper studies the dynamics of families of monotone nonautonomous neutral functional differential equations with nonautonomous operator, of great importance for their applications to the study of the long-term behavior of the trajectories of prob
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on t
We study stability of so-called synchronous slowly oscillating periodic solutions (SOPSs) for a system of identical delay differential equations (DDEs) with linear decay and nonlinear delayed negative feedback that are coupled through their nonlinear
In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynami
Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs