ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear Equation of State, COSMIC Acceleration and Deceleration During Phantom-Dominance

40   0   0.0 ( 0 )
 نشر من قبل Sushil Srivastava
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, RS-II model of brane-gravity is considerd for phantom universe using non-linear equation of stste. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension $lambda$ of the RS-II model. It is interesting to see that upto a certain value of energy density $rho$ satisfying $rho/lambda < 1$, weak energy condition is violated and universe super-accelerates. But as $rho$ increases more, only strong energy condition is violated and universe accelerates. When $1 < rho/lambda <2$, even strong energy condition is not violated and universe decelerates. Expansion of the universe stops, when $rho = 2 lambda$. This is contrary to earlier results of phantom universe exhibiting acceleration only.

قيم البحث

اقرأ أيضاً

We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schr{o}dinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schr{o}dinger quant ities as similar to those in time-independent quantum mechanics. We assume the expansion to be superfast, i.e. phantom expansion. We report all Schr{o}dinger-analogous quantities to scalar field cosmology. Effective equation of state coefficient is analyzed and illustrated. We show that in a non-flat universe, there is no fixed $w_{rm eff}$ value for the phantom divide. In a non-flat universe, even $w_{rm eff} > -1$, the expansion can be phantom. Moreover, in open universe, phantom expansion can happen even with $w_{rm eff} > 0$. We also report scalar field exact solutions within frameworks of the Friedmann formulation and the NLS formulation in non-flat universe cases.
137 - Damianos Iosifidis 2020
Starting from the generalized Raychaudhuri equation with torsion and non-metricity, and considering an FLRW spacetime we derive the most general form of acceleration equation in the presence of torsion and non-metricity. That is we derive the cosmic acceleration equation when the nonRiemannian degrees of freedom are also taken into account. We then discuss some conditions under which torsion and non-metricity accelerate/decelerate the expansion rate of the Universe.
We present a new class of spherically symmetric spacetimes for matter distributions with anisotropic pressures in the presence of an electric field. The equation of state for the matter distribution is linear. A class of new exact solutions is found to the Einstein-Maxwell system of equations with an isotropic form of the line element. We achieve this by specifying particular forms for one of the gravitational potentials and the electric field intensity. We regain the masses of the stars PSR J1614-2230, Vela X-1, PSR J1903+327, 4U 1820-30 and SAX J1808.4-3658 for particular parameter values. A detailed physical analysis for the star PSR J1614-2230 indicates that the model is well behaved.
Cosmological models with two interacting fluids, each satisfying the strong energy condition, are studied in the framework of classical General Relativity. If the interactions are phenomenologically described by a power law in the scale factor, the t wo initial interacting fluids can be equivalently substituted by two non interacting effective fluids, where one of them may violate the strong energy condition and/or have negative energy density. Analytical solutions of the Friedmann equations of this general setting are obtained and studied. One may have, depending on the scale where the interaction becomes important, non singular universes with early accelerated phase, or singular models with transition from decelerated to accelerated expansion at large scales. Among the first, there are bouncing models where contraction is stopped by the interaction. In the second case, one obtains dark energy expansion rates without dark energy, like $Lambda$CDM or phantomic accelerated expansions without cosmological constant or phantoms, respectively.
29 - George Chapline 2015
Although the nonlinear Schrodinger equation description of Einstein spaces has provided insights into how quantum mechanics might modify the classical general relativistic description of space-time, an exact quantum description of space-times with ma tter has remained elusive. In this note we outline how the nonlinear Schrodinger equation theory of Einstein spaces might be generalized to include matter by transplanting the theory to the 25+1 dimensional Lorentzian Leech lattice. Remarkably when a hexagonal section of the Leech lattice is set aside as the stage for the nonlinear Schrodinger equation, the discrete automorphism group of the complex Leech lattice with one complex direction fixed can be lifted to continuous Lie group symmetries. In this setting the wave function becomes an 11x11 complex matrix which represents matter degrees of freedom consisting of a 2-form abelian gauge field and vector nonabelian SU(3)xE6 gauge fields together with their supersymmetric partners. The lagrangian field equations for this matrix wave function appear to be a promising starting point for resolving the unphysical features inherent in the general relativistic descriptions of gravitational collapse and the big bang.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا