ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of a planet on the dust distribution in a 3D protoplanetary disk

37   0   0.0 ( 0 )
 نشر من قبل Sarah Maddison
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Fouchet




اسأل ChatGPT حول البحث

Aims: We investigate the behaviour of dust in protoplanetary disks under the action of gas drag in the presence of a planet. Our goal is twofold: to determine the spatial distribution of dust depending on grain size and planet mass, and therefore to provide a framework for interpretation of coming observations and future studies of planetesimal growth. Method: We numerically model the evolution of dust in a protoplanetary disk using a two-fluid (gas + dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a minimum mass solar nebula (MMSN) disk comprising 1% dust by mass in the presence of an embedded planet. We run a series of simulations which vary the grain size and planetary mass to see how they affect the resulting disk structure. Results: We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a completely different appearance depending on the grain size. For low mass planets in our MMSN disk, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may enhance the formation of a second planet by facilitating the growth of planetesimals in this high density region.

قيم البحث

اقرأ أيضاً

Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of th e disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The composition of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas depleted gap, the line emission depends on several different parameters, such as: the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.
Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Hydrodynamics equations describing the evolut ion of self-gravitating and viscous protoplanetary disks in the thin-disk limit were modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a variable maximum radius. The conversion of small to grown dust, dust growth, friction of dust with gas, and dust self-gravity were also considered. We found that the disk appearance is notably time-variable with spiral arms, dusty rings, and clumps, constantly forming, evolving, and decaying. As a consequence, the total dust-to-gas mass ratio is highly non-homogeneous throughout the disk extent, showing order-of-magnitude local deviations from the canonical 1:100 value. Gravitationally bound clumps formed through gravitational fragmentation have a velocity pattern that deviates notably from the Keplerian rotation. Small dust is efficiently converted into grown dust in the clump interiors, reaching a maximum radius of several decimeters. Concurrently, grown dust drifts towards the clump center forming a massive compact central condensation (70-100 $M_oplus$). We argue that protoplanets may form in the interiors of inward migrating clumps before they disperse through the action of tidal torques. We foresee the formation of protoplanets at orbital distances of several tens of au with initial masses of gas and dust in the protoplanetary seed in the (0.25-1.6) $M_{rm Jup}$ and (1.0-5.5) $M_oplus$ limits, respectively. The final masses of gas and dust in the protoplanets may however be much higher due to accretion from surrounding massive metal-rich disks/envelopes.
Rings and radial gaps are ubiquitous in protoplanetary disks, yet their possible connection to planet formation is currently subject to intense debates. In principle, giant planet formation leads to wide gaps which separate the gas and dust mass rese rvoir in the outer disk, while lower mass planets lead to shallow gaps which are manifested mainly on the dust component. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the star HD169142, host to a prominent disk with deep wide gaps that sever the disk into inner and outer regions. The new ALMA high resolution images allow for the outer ring to be resolved as three narrow rings. The HD169142 disk thus hosts both the wide gaps trait of transition disks and a narrow ring system similar to those observed in the TW Hya and HL Tau systems. The mass reservoir beyond a deep gap can thus host ring systems. The observed rings are narrow in radial extent (width/radius of 1.5/57.3, 1.8/64.2 and 3.4/76.0, in au) and have asymmetric mutual separations: the first and middle ring are separated by 7 au while the middle and outermost ring are distanced by ~12 au. Using hydrodynamical modeling we found that a simple explanation, involving a single migrating low mass planet (10 M$_oplus$), entirely accounts for such an apparently complex phenomenon. Inward migration of the planet naturally explains the rings asymmetric mutual separation. The isolation of HD169142s outer rings thus allows a proof of concept to interpret the detailed architecture of the outer region of protoplanetary disks with low mass planet formation of mini-Neptunes size, i.e. as in the protosolar nebula.
As the earliest stage of planet formation, massive, optically thick, and gas rich protoplanetary disks provide key insights into the physics of star and planet formation. When viewed edge-on, high resolution images offer a unique opportunity to study both the radial and vertical structures of these disks and relate this to vertical settling, radial drift, grain growth, and changes in the midplane temperatures. In this work, we present multi-epoch HST and Keck scattered light images, and an ALMA 1.3 mm continuum map for the remarkably flat edge-on protoplanetary disk SSTC2DJ163131.2-242627, a young solar-type star in $rho$ Ophiuchus. We model the 0.8 $mu$m and 1.3 mm images in separate MCMC runs to investigate the geometry and dust properties of the disk using the MCFOST radiative transfer code. In scattered light, we are sensitive to the smaller dust grains in the surface layers of the disk, while the sub-millimeter dust continuum observations probe larger grains closer to the disk midplane. An MCMC run combining both datasets using a covariance-based log-likelihood estimation was marginally successful, implying insufficient complexity in our disk model. The disk is well characterized by a flared disk model with an exponentially tapered outer edge viewed nearly edge-on, though some degree of dust settling is required to reproduce the vertically thin profile and lack of apparent flaring. A colder than expected disk midplane, evidence for dust settling, and residual radial substructures all point to a more complex radial density profile to be probed with future, higher resolution observations.
Context: Planets in accretion disks can excite spiral shocks, and---if massive enough---open gaps in their vicinity. Both of these effects can influence the overall disk thermal structure. Aims: We model planets of different masses and semimajor ax es in disks of various viscosities and accretion rates to examine their impact on disk thermodynamics and highlight the mutable, non-axisymmetric nature of icelines in systems with massive planets. Methods: We conduct a parameter study using numerical hydrodynamics simulations where we treat viscous heating, thermal cooling and stellar irradiation as additional source terms in the energy equation, with some runs including radiative diffusion. Our parameter space consists of a grid containing different combinations of planet and disk parameters. Results: Both gap opening and shock heating can displace the iceline, with the effects being amplified for massive planets in optically thick disks. The gap region can split an initially hot (T>170 K) disk into a hot inner disk and a hot ring just outside of the planets location, while shock heating can reshape the originally axisymmetric iceline into water-poor islands along spirals. We also find that radiative diffusion does not alter the picture significantly in this context. Conclusions: Shock heating and gap opening by a planet can effectively heat up optically thick disks and in general move and/or reshape the water iceline. This can affect the gap structure and migration torques. It can also produce azimuthal features that follow the trajectory of spiral arms, creating hot zones, islands of vapor and ice around spirals which could affect the accretion or growth of icy aggregates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا