ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity and cold-nuclear matter effects from Glauber-Gribov theory at LHC

251   0   0.0 ( 0 )
 نشر من قبل Konrad Tywoniuk
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف I. C. Arsene




اسأل ChatGPT حول البحث

We present predictions for nuclear modification factor in proton-lead collisions at LHC energy 5.5 TeV from Glauber-Gribov theory of nuclear shadowing. We have also made predictions for baseline cold-matter nuclear effects in lead-lead collisions at the same energy.



قيم البحث

اقرأ أيضاً

334 - I. C. Arsene 2007
We present predictions for heavy-quark production for proton-lead collisions at LHC energy 5.5 TeV from Glauber-Gribov theory of nuclear shadowing. We have also made predictions for baseline cold-matter (in other words inital-state) nuclear effects i n lead-lead collisions at the same energy that has to be taken into account to understand properly final-state effects.
We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra , dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.
112 - I. Arsene 2007
We calculate shadowing using new data on the gluon density of the Pomeron recently measured with high precision at HERA. The calculations are made in a Glauber-Gribov framework and Pomeron tree-diagrams are summed up within a unitarity-conserving pro cedure. The total cross section of $vphot A$ interaction is then found in a parameter-free description, employing gluon diffractive and inclusive distribution functions as input. A strong shadowing effect is obtained, in good agreement with several other models. Impact parameter dependence of gluon shadowing is also presented.
We study cold and hot nuclear matter effects on charmonium production in p+Pb collisions at $sqrt{s_text{NN}}=5.02$ TeV in a transport approach. At the forward rapidity, the cold medium effect on all the $cbar c$ states and the hot medium effect on t he excited $cbar c$ states only can explain well the $J/psi$ and $psi$ yield and transverse momentum distribution measured by the ALICE collaboration, and we predict a significantly larger $psi$ $p_text{T}$ broadening in comparison with $J/psi$. However, we can not reproduce the $J/psi$ and $psi$ data at the backward rapidity with reasonable cold and hot medium effects.
We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا