ترغب بنشر مسار تعليمي؟ اضغط هنا

Photons inside a waveguide as massive particles

473   0   0.0 ( 0 )
 نشر من قبل Zhi-Yong Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paper, we show that there exists a close analogy between the behavior of de Broglie matter waves and that of electromagnetic waves inside a hollow waveguide, such that the guided photons can be treated as free massive particles subject to a relativistic quantum-mechanical equation. Inspired by the effective rest mass of guided photons and the zitterbewegung phenomenon of the Dirac electron, at variance with the well-known Higgs mechanism we present some different heuristic ideas on the origin of mass.



قيم البحث

اقرأ أيضاً

The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type.
103 - Lan Zhou , Z. R. Gong , Yu-xi Liu 2008
We analyze coherent transport of photons, which propagate in a one-dimensional coupled-resonator waveguide (CRW) and are scattered by a controllable two-level system located inside the CRW. Our approach, which uses discrete coordinates, unifies low a nd high energy effective theories for single photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of photons. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits
We theoretically demonstrate dynamically selective bidirectional emission and absorption of a single itinerant microwave photon in a waveguide. The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wave length apart. By using simulations based on the input--output theory, we show that upon preparing an appropriate entangled state of the two qubits, a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits. Moreover, we demonstrate that this artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand, a feature essential to the creation of a fully inter-connected one-dimensional quantum network, in which quantum information can be exchanged between any two given nodes.
Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of $84%$. Our results provide a path towards realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.
We propose to integrate the electro-optic tuning function into polarization-entangled photon pair generation process in a periodically poled lithium niobate (PPLN). Due to the versatility of PPLN, both the spontaneously parametric down conversion and electro-optic polarization rotation effects could be realized simultaneously. Orthogonally-polarized and parallel-polarized photon pairs thus are instantly switchable by tuning the applied field. The characteristics of the source are investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe the domain engineering is a very promising solution for next generation function-integrated quantum circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا